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PREFACE

This report was prepared by Rockwell International Corporation, Los
Angeles Aircraft Division, Los Angeles, California, under Contract
F33615-71-C-1922, No. FX2826-71-01876/C093. The work was performed for the
Deputy for Development Planning, Air Force System Command, Wright-Patterson
Air Force Base, Ohio, and extended from September 1971 to June 1974.

Eugene L. Bahns, ASD/XRHD, was the Air Force program manager. Leonard
Ascani was the program manager for Rockwell International. Other Rockwell
personnel contributing to the project included:

G. Hayase - Mass Properties

R. Hiyama - Mass Properties

D. Chaloff - Mass Properties

C. Martindale - Mass Properties

H. Rockwell - Mass Properties

R. Allen - Mass Properties

P. Wildernuth - Airloads

G. Rothamer - Airloads

T. Byar - Airloads

S. Siegel - Structural Dynamics

S. Mellin - Structure and Fatigue

H. Haroldson - Thermodynamics

D. Konishi - Advanced Composites

C. Hodson - Structural Dynamics

The final report was published in 11 volumes; the complete list is as
follows:

'Volume

I "Executive Summary''

II  "Program Integration and Data Management Module"

II1 "Airloads Estimation Module'

IV 'Material Properties, Structure Temperature, Flutter, and Fatigue"

\' "Air Induction System and Landing Gear Modules"

VI  'Wing and Empennage Module'

VII '"Fuselage Module"

VIII 'Programmer's Manual'

IX '"User's Manual"

X "Flutter Optimization Stand-Alone Program'

XI "Flexible Airloads Stand-Alone Program'
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A

Av

AF(I)
AFW(I,J)

AFWCP(I,J)
AFWDF(I,J)

AFWF(I,J)

Aanx

B

FI
FO
Blgs

BL

AV

LIST OF SYMBOLS

Aspect ratio
Wing aspect ratio
Load on wing strips, I

Matrix of rigid wingloads on strips, I, for load
distributions, J

Matrix of wing strip centers of pr.:sure, X/C, on
strips, I, for load distributions, J

Matrix of incremental flexible wingloads on strips,
I, for load distributions, J

Matrix of flexible wingloads on strips, I, for load
distributions, J
Maximum cross-sectional area of body nose, in.2

Compressibility factor, (l-Mz)l/ 2

or
Cotangent of mach angle, (Mz-l)l/ 2
Span of lifting surface, ft

Spanwise distance from centerline of symmetry to
inboard end of wing flap, in.

Spanwise distance from centerline of symmetry to
outboard end of wing flap, in.

Butt line station of interface of wing and
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Butt line station, in.
Lifting surface chord, in.

Average 1lifting surface chord, b/S, in.



CLA

DF or ¢

DMXH

DXB(W)N

DXH

Wing flap chord, in.

Lifting surface 1ift coefficient

Section lift coefficient

Flexible wing lift-curve slope, per radian
Initial rigid wing lift-curve slope, per radian
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Root chord of theoretical wing, in.
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Chord length measure nomal to load reference
line, in.

Lift curve slope for wing or horizontal tail,
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Incremental horizontal tail rolling moment to be
applied to vee-type vertical tail only, in.-1b

X-distance from wing apex to center of pressure
of wing unit carry-over load 722 body for
distribution N, in.

X-distance from horizontal tail gpex to center of

pressure of horizontal tail unit airload, including
carry-over load, in.
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DXW(B)N

DXWN

DXwl

DXw2

DXW3

DXW4

El

F{J,1)

F(J,2)

F(J,3)

F(J,4)

FS

F-O

X-distance from wing apex to center of pressure of
unit airload on exposed wing for distribution N, in.

X-distance fram wing apex to center of pressure of
unit airload on wing, including carry-over load for
distribution N, in.

X-distance fram wing apex to center of pressure of
airload on wing, including carry-over load for
flexible wing 1ift due to angle of attack, in.

X-distance fram wing apex to center of pressure of
airload on wing, including carry-over load for
rigid wing 1ift due to wing flap deflection, in.

X-distance fram wing apex to center of pressure of
airload on wing, including carry-over load for
incremental flexible wing 1ift due to wing flap
deflection, in.

X-distance from wing apex to center of pressure of
airload on wing, including carry-over load for
flexible wing 1ift due to vertical acceleration, in.
Wing bending stiffness, lb-in?

Summation of rigid wing unit loads on strips 1
through 10 for distribution J

Summation of flexible wing unit loads on strips 1
through 10 for distribution J

Summat:ior, of incremental flexible wing unit airloads
on strips 1 through 10 for distribution J

Ratio of flexible load to rigid load,
F(J,2) + (F(J,1)

Fuselage station, in.

Fuselage station at intersection of wing elastic
with plane of symmetry, in.
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XA
YA

X (S0B)

Wing torsional stiffness, 1b-in?
Integer used to designate wing strip mumber
Airplan. pitching moment of inertia, slug ft2

Airplane yawing moment of inertia, slug :f:'t2

Integer used to designated wing-loading
distribution, i.e.,

J=1, loading due to angle of attack
J=2, loading due to flap deflection .
J-3, loading due to vertical acceleration

Flap span nomalizing parameter

Flap lift effectiveness parameter,

(dCL/d 6 F) + (dCL/d a)
Gust alleviation factor

Span-loading normalizing parameter

Body nose length (x-distance from body nose to
cross section of maximum area), in.

Mach number
Cotangent of leading edge sweep angle

Bending moment along load reference line in swept
reference system, in.-1b

Torsional moment along load reference line about
load reference line, in.-1b

Exposed lifting surface panel rolling moment at body

interface station (for wing, horizontal tail, or
vertical tail), in.-1b
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W(SOB)

? (SOB)

NYorNY

N, or NZ

Exposed 1lifting surface panel pitching moment at
intersection of load reference line and body inter-
face s:ation (for wing or horizontal tail), in.-1b
Exposed lifting surface panel yawing moment at
intersection of load reference line and body
interface station (for vertical tail), in.-1b

Integer used to designate type of wing airload
distribution, i.e.,
N=1, flexible lift due to angle of attack
N=2, rigid 1ift due to flap deflection
N=3, incremental flexible 1lift due to flap
deflection
N=4, flexible lift due to vertical acceleration

Airplane side load factor
Airplane vertical acceleration
Airplane design 1limit vertical load factor
Airplane maneuver vertical load factor
Airplane pitching acceleration, ratd/sec2

Incremental airload due to flexibility

Flexible airload (rigid load plus incremental load
due to flexibility)

Rigid load
Initial exposed wing panel load

Initial wing panel load, including carry-over load
on body
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pYVT or PYV

P

YNorl"YN

PZH or PZHB

PZNG!PZN

PZW1 or PZWBl
PZW2 or PZWB2
PZIW3 or PZWB3
PZW4 or PZWB4

AP(11)

ApRa(I)

APRF

APZH

APZW1

Qor QDOT

Vertical tail airload, including carry-over load, 1b

Side load on body nose, 1b

Total vertical load on horizontal tail, including
carry-over load on body, 1b

Vertical load on body nose, 1b

Total wing airload, including carry-over load on
body for flexible lift due to angle of attack, 1b

Total rigid wing airload due to wing flap
deflection, 1b

Total incremental flexible wing airload due to wing
flap deflection, 1b

Total flexibility wing airload due to vertical
acceleration, 1b

Wing unit carry-over load on body, per side

Unit airload on wing strip, I, for rigid wing
airload due to angle of attack

Unit airload on wing strip, I, for rigid wing
airload due to wing flap deflection

Unit inertia load on wing strip, I, normalized to
an exposed wing panel weight of -1.0 1b

Increment horizontal tail airload due to gust or
pitching acceleration, 1b

Increment wing airload due to gust, 1b
Airplane pitching acceleration, raad/sec2

Free-stream dynamic pressure, psf
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R or RDOT

Sir °F Sy
Story

SIC(X, ¥y 5 & ™

[SIC)

Airplane yawing acceleration, r'a<:l/s¢.ec2

Rigid loads at structural influence coefficient
points

Body nose effective radius, in. ( = vV (Apax/2 ™) )

Area of theoretical horizontal tail, ft:2

Area of theoretical vertical tail, ft2

Area of the theoretical wing, ft2

Structural influence coefficient; i.e., deflection
at point X,y due to a 1-pound load at point %, 7,
in./1b

Matrix of structural influence coefficients
Matrix of streamwise slopes

Shear along load reference line, 1b

Exposed lifting surface shear at intersection of

load reference line and body interface station, 1b

Average running unit normal loading for wing
strip I

Running unit normal load at n-station along load
reference line

Average running unit torsional moment about load
reference line for strip I

Running unit torsional moment about load reference
line at n-station along load reference line
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USZN

UPZWN

USZW(B)N

UMXW(B)N

UMYW(B)N

UPZB(W)N

IMYB(W)N

Same as ULy, or UL(I), but is normalized for a

1-pound wing panel load, including body carry-over
load for distribution N, 1b-in.

Same as UT, or UT(I), but is normalized for a
1-pound wing panel load, including body carry-over
load for distribution N, in.-1b-in.

Unit normalized shear at stations along load
reference line for distribution N, 1b

Unit normalized bending moment at stations along
load reference line for distribution N, in.-1lb

Unit nomalized torsional moment about load reference
line at stations along load reference line for
distribution N, in.-1b

(=1.0) Unit normalized wing panel load, including
carry-over load on body for distribution N, 1b

Unit normalized wing panel total pitching moment
(including carry-over load) at intersection of load
reference line and plane of symmetry for
distribution N, in.-1b

Exposed wing panel unit normalized load for
distribution N, 1b

Exposed wing panel unit normalizeua rolling moment
at body interface station for distribution N, in.-1b

Exposed wing panel unit normalized pitching moment
at intersection of load reference line and body
interface station for distribution N, in.-1b

Unit normalized carry-over load on body per side
for distribution N, 1b

Unit normalized pitching moment about intersection
of load reference line and plane of symmetry for
body carry-over load per side for distribution N,
in.-1b
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USZW2

]

(x/€)
(X/C)q

(X/C)y
XBW(B)

XBB(W)

Unit normalized exposed wing rigid load due to flap
deflection (= USZW(B)N for N=2), 1b

Equivalent airspeed, knots
Body nose volume (over length, { N)’ in?

Airplane gross weight, 1b

Weight of wing strip, I, 1b
Exposed wing panel weight, 1b

Distance measured along a line paralled to airplane
X-axis or fuselage reference line, in.

Chordwise location of wing structure influence
coefficient point where deflection is calculated
(see Figure 3), in.

Center of pressure location in fraction of chord

Center of pressure location in fraction of local
chord for lift due to angle of attack

Center of pressure location in fraction of local
chord for rigid 1lift due to wing flap deflection

Fuselage station of center of pressure of exposed
wing airload, in.

Puselage station of center of pressure of wing
carry-over airload on body, in.

Fuselage station of center of pressure of
horizontal tail airload, including carry-over
load, in.

Fuselage station of center of pressure of vertical
tail airload, including carry-over load, in.

17



ax,
(X/C) ey
X/Cmp

XCG

XNorXBN

o

or

or

5 B &

or

2 £ £ g

Xw2

Distance aft of load reference line measured normal
to load reference line (see Figure 3), in.

Location of aft influence coefficient points in
fraction of chord (see Figure 3)

Location of forward influence coefficient points in
fraction of chord (see Figure 3)

Location of center of gravity at wing strip weight
in fraction of wing strip mean chord (see Figure 2)

Puselage station of loading edge of wing local
chord, in.

Fuselage station of airplane center of gravity, in

Fuselage station of center of pressure of body
rose load, in.

Fuselage station of body nose station, in.

Fuselage station of theoretical wing root chord
leading edge, in.

Fuselage station of theoretical horizontal tail
root chord leading edge, in

Fuselage station of theoretical vertical tail root
chord leading edge, in.

Fuselage station of center of pressure of flexible
wing airload, including carry-over load, due to
angle of attack, in.

Fuselage station of center of pressure of rigid
wing airload, including carry-over load, due to
flap deflection, in.

Fuselage station of center of pressure of incre-

mental flexible wing airload, including carry-over
load, due to flap deflection, in.
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Yro

Y

Y BS’

BI’

YW (BN

YA

YBW(B)

YBH or YH

Zp1

BV

Y

BW

orY

BH

Fuselage station of center of pressure of flexible
wing airload, including carry-over load, due to
vertical acceleration, in.

Spanwise location of wing structural influence
coefficient point where deflection is calculated
(see Figure 3), measured along elastic axis, in.

Spanwise station (butt line) of inboard end of
wing flap, in.

Spanwise station (butt line) of outboard end of
wing flap, in.

Spanwise station (butt line) of wing-body or
horizontal tail-body interface station, in.

Spanwise station (butt line) of center of pressure
of exposed wing airload due to distribution N, in.

Spanwise station along load reference line measured
from intersection of load reference line and plane
of symmetry, in.

Spanwise station (butt line) of center of pressure
of exposed wing airload, in.

Spanwise station (butt line) of center of pressure
of horizontal airload, including carry-over load,
in.

Z-distance from vertical tail theoretical root
chord to vertical tail-body interface station, in.

Distance aleng vertical tail load reference line
measure from intersection of load reference line
and theoretical vertical tail root chord plane, in.

Z-distance from theoretical vertical tail root

chord to center of pressure of vertical tail
airload, in.
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o LOAD

n(I)

=l

vl

Angle of attack, radians
Load due to angle of attack

Vortex strength, (C Cl) v/2

Nondimensional span station, Y(b/2)

Nondimensional span station at center of wing
strip, I

Distance along wing elastic axis fram plane of
symmetry to influence coefficient point at which
unit load is applied (see Figure 3), in.

Sweep angle of wing elastic axis (see Figure 3), deg

Sweep angle of leading edge, deg
Sweep angle of load reference line, deg

Taper ratio of theoretical lifting surface

Spanwise distance along wing elastic axis measured
from plane of symmetry (see Figure 3), in.

Airplane mass ratio, 2(W/S) + (P¢q CAV CLaWF)

Air density, slug/ft3
Chordwise location of structural influence

coefficient at which unit load is applied (see
Figure 3), in.
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Section [

INTRODUCTION

During accelerated flight conditions at high speeds, the deflections of
the lifting surface structure tend to redistribute the airloads. The result-
ing airload distribution can be considerably different from that computed on
the assumption of complete rigidity. The redistribution results from the
change in streamwise angle-of-attack along the span caused by the torsional
and bending deflections. For a given mach number, the greater the dynamic
pressure, the greater will be the load redistribution.

The airloads module in the SWEEP program does not include the effects of
aeroelasticity; i.e., the changes in airload distributions due to stiuctural
deflections. A significant refinement is obtained by including the added
effects on loads caused by wing structural flexibility. This is accomplished
by the use of thc stand-alone flexible airloads program described herein.
Methods and formulation employed in the stand-alone program are presented in
Section II. The computer program description and program usage information
are presented in Sections III and IV, respectively.

The stand-alone program requires a substantial amount of external input
data. These data consist of (1) airplane geometry data identical to that
used by the airloads module (BLCNTL) in the SWEEP program, (2) the wing EI
and GJ distribution and elastic axis location, and (3) the specific flight
condition case data. The specific flight condition case data include type
of flight condition (balanced maneuver, vertical or lateral gust, and pitch-
ing or yawing acceleration), mach number and altitude combinations, limit
maneuver load factors, pitching and yawing accelerations, airplane weight and
CG location, and estimated wing weight distribution. The program calculates
the airload and center-of-pressure location for each airplanec component and
the airload shear, bending moment, and torsion distribution on the wing and
enpennage surfaces, all for the specified flight condition case.
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Section 11
METHODS AND FORMULATION

FLEXIBLE AIRLOADS PROGRAM FUNCTIONS

The objective of the flexible airloads stand-alone program, BFCNIL, is
to detemmine the airloads on the airplane components, including the effects
of wing flexibility. These loads are detemined for a specific flight condi-
tion case and are used as an optional external input to the SWEEP program.
The methods employed are described in the order that the subroutines USPANF,
BNLDSF, and SPABMF are used in the stand-alone program.

Subroutine USPANF is used to determine the lifting surface unit airload
shears, moments, centers of pressure, and lift curve slopes, all for a

specified mach number and altitude. For the empennage (horizontal and
vertical tail) surfaces, the methods described in Volume III, Section II are
used. However, for the wing, the methods are revised to include the effects

of wing flexibility.

Subroutine BNLDSF is used to determine gross limit airload and center of
pressure on each of the airplane components and the airplane inertia factors
for specified flight conditions. The methods are revised to include effects
of wing flexibility.

Subroutine SPABMF is used to determine 1limit airload shear, bending
moment, and torsion distributions on the 1ifting surfaces for a specific
flight condition. For the empennage surfaces, the methods described in
Volume III, Section II, are used. However, for the wing, the methods are
revised to include the effects of wing flexibility,

BASIC FLIGHT CONDITIONS

The flexible airload stand-alone program is designed to calculate
airplane structural component airloads for a specific flight condition case.
The specific flight condition case is defined by the types of condition
(maneuver or gust), mach No., altitude, gross weight, cg position, and wing
weight distribution. Cases from which a specific case can be selected are
shown in Figure 1. It is noted that a specific case may consist of more
than one type of condition and at more than one altitude. Cases available
are similar to those in the SWEEP program (Volume III, Section II), except
that additional altitudes are provided because effects of flexibility vary
with dynamic pressure at a given mach mumber.
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Condition case No. 1 through 7 and 10 and 11 cover the basic flight
conditions with wing flaps retracted. Condition case No. 8 is a limit load
factor maneuver condition with wing flaps down. Condition case No. 9 is a
1.0 g flaps-down trimmed condition for use with landing conditions.

DETERMINATION OF ' IFTING SURFACE UNIT AIRLOADS

Methods of analysis used to develop lifting surface unit airload distri-
bution, surface lift curve slopes, and surface airload centers of pressure
are presented in this section. Unit airloads are defined, and basic data
used for the determination of the surface unit airloads are also presented.

Unit airload shears and moments are determined at 13 selected spanwise
stations along the selected load reference line, including root and tip
stations. Unit airload shear and moments at the surface-body interface
station are determined in the unswept (body axes) system. Overall centers
of pressure locations of the exposed panel and body carry-over loads are
determined with respect to the theoretical surface apex.

DEFINITION OF UNIT AIRLOADS

The wing unit airload distributions are defined in the following
paragraphs.

Unit Rigid Lift lue to Angle of Attack

Unit rigid 1ift due t» angle of attack is the airload distribution due to
angle of attack for a rigid lifting surface load of 1 pound per side or panel
at a specific mach number.

Unit Flexible Wing Lift Due to Angle of Attack

The unit flexible wing lift due to angle of attack is the net airload
distribution due to angle of attack for the flexible wing surface, and is
normalized to a wing load of 1.0 pound per side at a specific combination of
mach number and dynamic pressure. The net airload distributiuon includes the
combination of the rigid and the aeroelastic increment.
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Unit Rigid Lift Due to Wing Flap Deflection

Unit rigid 1ift due to wing flap deflection is the airload distribution
due to flap deflection for a rigid wing surface load of 1 pound per side.

Unit Incremental Flexible Lift Due to Wing Flap Deflection

Unit incremental flexible 1lift due to wing flap deflection is the
incremental flexible airload distribution due to the application of the rigid
airload distribution due to wing flap deflection, and is normalized to
1 pound per side at a specific combination of mach number and dynamic
pressure.

Unit RiJg}d Load Due to Vertical Acceleration

Unit rigid load due to vertical acceleration is the wing weight dis-
tribution normalized to an exposed wingload of -1 pound per side.

Unit Flexible Wing Lift Due to Vertical Acceleration

Unit flexible wing lift due to vertical acceleration is the incre-
mental flexible airload distribution due to the application of the wing
weight distribution, and is normalized to 1 pound per side at a specific
combination of mach number and dynamic pressure.

BASIC DATA FOR UNIT AIRLOAD DETERMINATION

The basic data required for unit ai.ioads include all of the lifting
surface aerodynamic and geometry data described in Volume III, Section II,
and the following wing data:

1. Exposed wing panel weight distribution consisting of weight and
CG for each of 10 equally spaced chordwise strips, as shown in
Figure 2. CG is in temms of X/C of the strip mean chord.

2. Sweep angle of the wing elastic axis, Agp, and the fuselage station

of the wing elastic axis at the centerline of symmetry,
FSEA = 0, are shown in Figure 3.

25



C,.(x/c) "
10 10 ¢. H—’f‘"’
' -'___,Jr"'"‘
=
o
Strip
Strip 9
10
H— bw/2 ¥

Figure 2. Wing chordwise strips and centers of pressure.

26



>|

YA ALE

=

1k

IS
=

ﬁ //f“:lp
1) 4) Bl Body side
Sl
d:lp
10
b/2 ¥

Figure 3. Wing diagram for flexible load analysis.

27



3.

The variation of the exposed wing stiffness parameters, EI and GI,
with span station, Yp o along the elastic axis.

WING UNIT AIRLOAD DISTRIBUTIONS

The general procedure for the calculation of unit flexible wingload
data consists of the following steps:

1.

3.

5.

Determination of unit rigid loads and centers of pressure (CP's) on
10 equal-span chordwise strips between the side of the body and wing-
tip, and on the strip between the side of the body and airplane
centerline of symmetry.

Determination of wing rigid lift-curve slope.

Determination of unit flexible airloads, unit incremental flexible
airloads, and CP's on each strip, and wing flexible-to-rigid load
ratios.

Determination of wing flexible 1ift curve slope.
Determination of wing unit flexible shear, bending moment, and

torsion along the reference line at the span stations specified for
weight analysis.

Wing Unit Rigid Airload Due to Angle of Attack

Wing unit rigid loadings, rigid 1ift curve slope, and CP's are
determined as follows.

The wing platform is divided into 10 equal-span chordwise strips
between the side of the body station, "gs? and wingtip station, n = 1.0, and
one strip between npc and the airplane centerline station, n = 0, as shown
in Figure 3.

For subsonic speeds (M<1.0), calculate compressibility factor, B:

B= 1 - MyY/? )
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and aspect ratio parameter, BA/K:
BA/K = A - (B/K) (2)

where B/K is obtained by interpolation of B/K versus M data in Figure 4
of Volume III, Section II.

Calculate compressible sweep parameter, AB:

1 1 {1- A\
AB'Mcmlﬁ[tanALE -3 (1 ~ )‘)” 3)

Usiny parameters Ap, BA/K, and \, interpolate C, C/CL Cpy data in
Table 1 of Volume III, Section II, to obtain initial C 1C/CL Cay values at
the selected n stations, and integrate to obtain initial unit load on each

strip; i.e.,

(1) c,C

APO(I) '/ U C-_‘—C dn (4)
. L "AV
(I) INBD

Sumnate strip loads to obtain initial total wingload, Pm.

11

Pyo ~ >_. AP, (D) (5)
=1

I

Arbitrarily change carry-over strip No. 11 load, APy (11), to one-half
initial value to allow for 1lift loss due to body interference,; i.e.,

A.P1 1) = aPj (11)/2 (6)

Sum strip loads to obtain a new total wing load:
10

Pg = AP (11) + z aP_(D) N
e
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The unit rigid strip loads are then obtained by normalizing a total wing

rigid unit load of 1 per side:

For strip 11,
ap, 1) = (+2\ap, a1)
Re P ( 1 )
Wl
and for strips 1 through 10,

1.0
; APRC (I) = (ﬁ) (APO(I))

Using parameters Ap, BA/K, and \, interpolate BC; /K data in

Table 2 of Volume III, Section II, to obtain BCM/K value.

The initial 1ift curve slope, CLaWO’ is then,
CL‘,’W0 = 57.3 (H:La/l()/ (B/K), per ralian

and the wing rigid 1ift curve slope is then,

PWI
meR = (p—) CLaWO’ per radian
WO
For supersonic speeds (M > 1.0), calculate the compressibility
factors:
B = (MZ ) 1)1/2
Bn = B Cot ALE
BA = B'A
W

Using BA, Bn, and \, interpolate (2I/Veb) in Table 3 of

Volume III, Section II, at selected n stations, and integrate to obtain

initial load on each strip; i.e.,
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n
ap (1) = [ (1T

(2I/Vab) dn (15)
" (1) 1B
Summate strip loads to obtain initial total wingload, Pwo,
11 C
o+ 3 arg (- 25 ) a6
I=1

The initial value of wing lift curve slope is then:

me0 = A-PwO a7

Arbitrarily change carry-over strip 11 load AP,(11) to one-half

initial value to allow for lift loss due to body intgrference; i.e.,

AP1 1) = APO (11)/2

(18)
Sum strip loads to obtain a new total wingload:
10
Pw1 = AP1 (11) + 2 APO(I) 19)
I=1
Wing unit rigid strip loads are then obtained by normalizing to
give a total wing rigid un’t load of 1 per side,
ap. (1) = (29Yap, 1) (20)
Re P ( 1 )
Wl
and for strips 1 through 10
_{1.0 :
ap, (1) -(%) (AP (1) (21)
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Wing rigid 1ift curve slope is then:

P
-
={=—=]C (22)
CLow (pm LaWO
The column matrix of unit rigid strip loads due to angle of attack,
AFW(L,1) = &Py 1 (23)
where
I = 1 through 10
and APRa is from equation 9 or 21.
CP's of unit rigid strip loads due to angle of attack are obtained
as follows:
® For strips 1 through 10, the CP is at an X/C value based on the
mean chord of the strip. The (X/C), value is obtained from the
(X/C)wm; versus mach number plot in Figure S5 of Volume III,
Section II.
® For strip 11, the CP is assumed to be at the same fuselage station
as the CP of strip 1.
The column matrix of the CP's, AFWCP (I,1), for strip loads due to
angle of attack is as follows:
(24)

AFKCP (1,1) = (X/C), (D)
where
I = 1 through 10

Wing Unit Rigid Airload Due to Wing Flap Deflection

Wing unit rigid strip loadings and CP's are determined as follows.
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Calculate wing span ratios for outboard and inboard ends of flap,

beo/d = Y /b/2 (25)
bey/b = Y /b/2 (26)

Using parameters bgy/b and bpj/b, interpolate CpC/CpCay data in
Table 3 of Volume III, Section II, at selected n values for bFO/b and
bFI/b flap span ratios. :

Calculate initial span loading parameter due to flap deflection
at selected n stations,

(A€ CLCay) = (Y CLaCAV)b " (4 CLalav ) . (27)
R)/b FI/b
and integrate to obtain initial load of each of the strips,
(1) OUTED
APPO (ry = (ACIC/CLaCAV) dn (28)
(1) INBD
Sumate strip loads to obtain flap span normalizirg parameter.
11
K = O APy (D) (29)
I1=1
Unit rigid strip loads due to flap deflection are then,
AP, _(I) = —— AP (I) (30)
RF KBF 20
The column matrix of unit rigid strip loads for the 1lift due to
flap deflection, AFW (I,2), is as follows:
AFW(I,2) = APRF(I) (31)
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where

I = 1 through 10

CP's of unit rigid strip loads due to flap deflection are obtained as
follows:

® For strips 1 through 10, the CP is at an X/C value based on the mean
chord of the strip. The (X/C)g value is obtained from the (X/C)g
versus (C¢/C,) data in Figure 6 of Volume III, Section II.

® For strip 11, the CP is assumed to be at the same fuselage station
as for strip 1.

The colun matrix of CP's for unit rigid strip loads due to flap
deflection, AFWCP (I,2), is then:

AFKCP (I,2) = (X/C)F (N (32)
where
I = 1 through 10

Wing Unit Rigid Load Due to Vertical Acceleration

Unit rigid strip loads due to vertical acceleration consist of the
weight of the strip normalized to an exposed wing load of -1 pound per
side; i.e.,

ap_(1) = -ﬁ- W (D) (33)
where
Wg(I) = strip weight
and
10
Wep = O W (D) (34)
=1
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The column matrix of the rigid strip loads due vertical acceleration,
AFW (I,3) is then:

AFW (1,3) = aP_ (I) (35)

where
I = 1 through 10

CP's of rigid strip loads, (X/C)y., are based on the mean chord of the
strip, as shown in Figure 2. The colu§m matrix of the CP's, AFWCP (1,3),
is then:

AFKCP (1,3) = (X/C), (D) (36)
S

where

I = 1 through 10

Win_g Flexible Airload Distributions

The methods used to calculate the redistributed wing airloads caused
by the wing torsional and bending deflections are based on strip theory.
Redistributed wing loads include the effects of the wing deflections
resulting from (1) lift due to angle of attack, (2) lift due to flap
deflection, and (3) inertia load due to vertical acceleration.
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Wing Structural Influence Coefficients

For the static aeroelastic analysis, the exposed semispan of the wing
is divided into 10 evenly spaced strips, as shown in Figure 3. Two struc-
tural influence coefficient points are placed on the centerline of each
strip, one at X/C forward and one at X/C aft. The values of fuselage
stations (FS) and the butt line (BL) for the points on strip I are formed
as follows:

b/2 - B .
BL = BLBS + (2I-1 30 (37)
x'LE = FSLE rooT * BL tanA, o _ (38)
C BL_
. c ::T[l-b/z a -n] (39)
FSFM) = [(X/C)WD . C] + X'L.E (40)
FSAFI‘ = [(X/C)m : C] + xLE (41)
where
(X/C)FWD = (.15
and

(X/C)AFI‘ = 0.65.

The coordinates are then converted into the swept elastic axis system
(Figure 3).

X = (FS - FSEA-O) COSAEA - BL " smAEA (42)

y = (FS - FSp, o) sinAp, + BL * cosAp, (43)

NOTE The elastic axis does not have to be a constant-percent chord line.



Elements of the SIC matrix are formed using the following equation:

nzy

SIC (X, ¥; §» M = GERVEVALS FFygp

(o]
y
- = ) -
xef AR (44)
0

Each element of the SIC matrix represents the deflection at: x, y due
to a 1-pound vertical load at §, 7. The preceding equation is integrated
to form the upper right triangle of the SIC matrix. In this process of
integration, the value of ¥ sametimes exceeds 7. In that case, the upper
limit of integration is changed to f. The other half of the SIC matrix is
formed by symmetry.

SIC;; = SIC;; (45)

___ For the static aeroelastic analysis, a matrix of streamwise slopes,
SIC, is required. This matrix is formed by premultviplying the SIC matrix
by a differential operator matrix called Dy, which is formed from the
structural influence point geametry. The elements of Dy are formed as
follows, where I goes fram 1 through 10.

1
FSAFT(I) £ FSFWD(I)

D, (1,2I-1) = (46)

Dg (1,21) = 3 (47)

alk
SAFI‘(I) : FSFWD(I)

The SIC matrix is then formed as:

[ﬁ] - [Do] [SIC] (48)
10,20 10,20 20,20
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Wing Aerolastic Distributions

General Method. For each load effect, the total flexible wing load
distribution is:

l Px:uzx} - {pmc;ml * IPAFLEX ] 49)

Where the incremental aeroelastic load distribution is related to the
flexible load:

rans <[] 7] (e

In this simplified solution, the aerodynamic load matrix, A, is defined
as a diagonal matrix formed from the a distribution load on each chordwise
strip.

[A] = [« LOAD] (51)

The equation for the aeroelastic solution is then formed as:

’PFLEX} ) 'p!ucm} d [“m] [m] {PFLEX} (52)
Transpose and factor out pFLEX:

L] ooioo] [57]| {rund frucn |
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Let

][] «[ane] [

then,

)i

Formulation for Flexible Airloads Program. The rigid loads distribution,
AFW, for «, o FLAP, and WEIGHT, are 51' stributed to the SIC points by
simply beaming the load on each strip, using the corresponding chordwise
centers of pressure, AFWCP.

AFWCP(1,J) - (X/C) ppp
RLOADS(21-1,J) = AFW(1,J) X/ gp - /0 ypp

(56)

-AFWCP(1,3) + (X/C)pyp

RLOADS(2I, J) = AFW(I,J) X/ gy ~ )y (57)

where

I = 1 through 10

J =1 aload
J=2 6F load

J = 3 weight
Define C as:

(58)
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The D-matrix is then formed a column at a time, using column 1 of the
RLOADS matrix; i.e., the @ load distribution and the SIC matrix. The colum
K goes 1 through 20.

D(2I-1,K) = -C * RLOADS(2I-1,1) * SICBAR(I,K) (59)

D(21,K) = -C * RLOADS(2I,1) - SICBAR(I,K) (60)
where

I = 1 through 10

The D-matrix is completed by adding 1.0 to each diagonal element.
D(K,K) = 1.0 + D(K,K)

The static aeroelastic equation to be solved is then:

(FLEXIBLE) (RIGID)
[D] [ FLOADS * [Ruoaps (61)
2

20,3

This equation is solved for the flexible loads a column at a time, using
a general least-squares technique. This technique is used hecause it is very
fast and will work with even a poorly conditioned matrix. This method gives
the solution to a system of linear equations Bx = C, where B is an Nx M
matrix with N > M, and C is a column vector of dimension N. In the over-
determined case, a least-squares solution is obtained.

The method finds an N x N matrix R such that R is orthogonal (i.e.,
RTR=I) and
T d
R(B,C) ={ 0 «
0o
where T is an M x M triangular matrix and d is an M-dimensional column vector.

The number a is the square root of the sum of the squares of the residuals.
Solution of the problem is then the solution of Tx=d, and is found by back

substitution.
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Once flexible loads at the SIC points have been determined, flexible
loads on the strips, AFWF, are formed by a simple summation; the delta
flexible loads, AFWDF, are formed by subtracting rigid loads from flexible
loads.

AFWF(T7,J) = FLOADS(2I-1,J) + FLOADS(2I,J) (62)

AFWDF(1,J) = AFWF(I,J) - AFW(I,J) (63)
where

I = 1 through 10

The total summed rigid loads, flexible loads, delta flexible loads, and
flexible-to-rigid load ratios are:

10

Rigid F(J,1) = 2 AFW(I,J) (64)
Ie1
10

Flexible F(J,2) = 2 AFWF(1,7) (65)
I-1

AFlexible F(J,3) = F(J,2) - F(J,1) (66)

F F(J,2

= F(J,4) =57 (67)

Because the rigid load distribution on the strips is used for delta
flexible loads, the chordwise CP on each load strip is the same for the
delta flexible loads as it is for the rigid a 1load.
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The wing flexible lift curve slope is determined as follows:

10 ]
AP (11) + ) AFWF (1,1)

el
L aWR 10

AP, (1) + ) AP (1,1)
I-1 J

L aWF (68)

b

where AP, (11) is from equation 8 or 20, AFWF (I,1) is the colum matrix
of flexible strip loads due to angle of attack, and AFW(I,1) is the column
matrix of rigid strip loads due to angle of attack from equation 23.

Wini Unit Shears and Moments

Wing unit airload shears and moments for the flexible wing are developed
using the column matrices of strip loads and CP's. The average unit running
normal loading on a strip is the strip load (AF(I) divided by the strip
width, and the running torsional moment is the running normal loading times
the normal distance from strip CP to the selected load reference line for
weight analysis. The average running normal loading and running torsional
moment are applied at n station for the midspan at the strip.

Running loadings on the exposed wing along the load reference line are
as follows (where 7m (I) is the p station at the midspan of the strip I,
UL(I) is the unit running normal loading at station n(I), and UT(I) is
the unit running torsional moment at station 7 (I)):

n(1) = npg *+ 0.05 (1 -npg) + 0.1 (T -1) (1-1ng)

= -0.05 + 1.05 oo + (1 -mpc) 1/10 (69)
AF (D)
UL(I) = . (70)
0.1 (1 nBS)
UT(I) = - &X, (1) * UL(D) (71)
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The term AX, (I) is the normal distance from the load reference line to
the local CP and is detemined, using the methods of Volume III, Section II,
as follows:

aX, (1) = C, (D) [(x,\/c,‘)cp - (xA/cA)R] (72)
where
1+n(I) Q -2)) cos A
CpD) = R (73)
1- K, [ - O C/cg]
4 (1 - in A A (74)
KA'K(lH\) (sm R €08 R)
(Xp/Cp)gp = WO [1- %y (1 - 0VOI) ] (76)

Running unit normal loading inboard of the side of the body (n< "BS) is
assumed to be constant and is:

UL, = AP (11) 77

"Bs
where AP(11) is the unit airload on strip 11.

Unit running torsional moment inboard of the body side about the load
reference line at station n is:

where AX,p is determined, as follows.
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The CP is assumed to be at a constant fuselage station equal to the
fuselage station of the CP at strip 1. Then, when n < Ngs?

SXpn *8Kpy e CPI ) (%) (sinng) 09

where (1 e1) is from equation 69

and aX, is from equation 72
"(1=1)

Unit running normal and torsional loadings for the specific type of
distributions are obtained using the following strip load data:

1. For flexible 1ift due to angle-of-attack distribution, use the
following:

a. In equation (70): AF(I) = AFWF(I,1) fram equation 62
b. In equation (76): (X/C)CP = AFWCP(I,1) from equation 24

c. In equation (77): AP(11) =APap(11) from equation 8 or 20,
depending on mach mmber

2. For rigid 1ift due to flap deflection distribution, use the
following:

a. In equation (70): AF(I) = AFW(I,2) from equation 31

b. In equation (76): (X/C)CP = AFWCP(I,2) from equation 32
c. In equation (77): AP(1l) = APFR(H) from equation 30

3. For incremental flexible 1lift due to flap deflection distribution,
use the following:

a. In equation (70): AF(I) = AFWDF(I,2) from equation 63
b. In equation (76): (X/C)CP = AFWCP(I,1) from equation 24

c. In equation (77): AP(11) = 0
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4. For incremental flexible 1lift due to vertical acceleration
distribution, use the following:

a. In equation (70): AF(I) = AFWDF(I,3) from equation 63

b. In equation (76): ()(/C)cp = AFWCP(I,1) from equation 24

c. In equation (77): AP(11) = 0

Wing unit shear and moments are calculated along the selected load
reference line at the n stations selected for weight analysis and are
normalized for a surface load of 1 pound per side.

Unit span normal loading, UL, from equations 70 and 77, is integrated
to obtain the unit shear values, USZN, at the selected n stations; i.e.,

.0
USIN = K, f (ULN)d ,, (80)
n
where
N (o1
[ (ULN)d
0

Unit shear, USZ, is integrated to obtain the unit bending moment,
UMXTN:
1.0

b
UMXTN = 2 cos AR f (USZN)d" (82)
n
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At et~ e e

Unit running torsional moment, UT, from equations 71 and 78, is
integrated to obtain the unit torsional moment, UMYIN:

1.0
IMYTN = K, [ wm)d, (83)

n

In equations 80 through 83, the N in ULN, USZIN, UMXIN, UMYIN, and UIN
is used to designate the type of distribution; i.e.,

N = 1 for flexible 1ift due to angle of attack

N = 2 for rigid 1ift due to flap deflection

N = 3 for incremental flexible 1lift due to flap deflection
N = 4 for flexible 1lift due to vertical acceleration

Wing unit airloads and CP's for each of the four types of airload
distribution are determined as follows.

Total wing unit airload per side, UPZWN, wing unit pitching moment per
side, UMYWN, at the intersection of the wingload reference line and the A/P
centerline; and CP of the wing unit airload, DXWN, measured aft fram the
theoretical wing apex, are as follows:

UPZWN = (USZN)n 0" 1.0 (84)
UMYWN = (IMY'IN),' = COSAp - (IND('I‘N)" . 0 sin/\R (85)
DXWN = CR(X/C)R - (UMYWN) / (UPZWN) (86)

Exposed wing unit loads of the intersection of the wingload reference
line and the body side in the body reference system are as follows:

USZW(B)N = (USZN) n pg (87)
UMXW(B)N = (UMXTN) n gg COS AR + (UMYTN) " BS sin/\R (88)
UMYW(B)N = (UMYTN) 5 po COSAp - (UMXTN)  po SinAp (89)
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NOTE Also

(USZN) "BsS
USZW(B)N = W—; UPZWN (90)
DXWBIN = C (X/C), + YpctanA - %)L: (91)

i UMXW(B)N
YWEBN = Yy + Wﬁﬂ'ﬁ (92)

Wing unit carry-over load on the body, UPZB(W)N, and its CP, DXB(W)N,
are determined as follows:

UPZB(WN = (USZN) , o - (USZN) y po (93)

UMYB(W)N = [lMYTN,,_o - lMYTNnBs] cosAp -

Y
BS .
[umn,, o - UMKINp oo - (USZNqBS)(m>:|smAR (94)

UMYB(W)N

DXB(W)N = Cp (X/C)p - TRZBEN

(95)
EMPENNAGE UNIT AIRLOAD DISTRIBUTIONS
The unit airload distributions on the horizontal and vertical tail

surfaces are determined using the methods described in Volume IIT,
Section II.
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COMPONENT LIMIT AIRLOADS

Gross limit airloads on airplane components and airplane inertia factors
are determined for specific types of flight conditions, using methods similar
to those described in Volume III, Section II. Revisions are made to include

the effects of wing flexibility, consisting of the following:

1. Wing airload is divided into four parts: (1) flexible load due to
angle of attack, (2) rigid load due to flap deflection, (3) incre-
mental flexible load due to flap deflection, and (4) incremental
flexible load due to vertical acceleration.

2. Airplane balance equations are expanded to incorporate added wingload
parts.

3. Flexible wing lift curve slope is used to detemine wing incremental
gust load.
BALANCED MANEUVER CONDITION
The balanced maneuver condition is a flight condition where the aircraft
is trimmed (balanced) by a horizontal tail or canard load. Incremental loads
due to flap deflection are determined only for low subsonic conditions.
Wing airloads consist of the following:
PZIW1 = Flexible lift due to angle of attack
PZW2 = Rigid 1lift due to flap deflection
PZW3 = Incremental flexible lift due to flap deflection

PZW4 = Flexible 1ift due to vertical acceleration

Their corresponding CP's in terms of fuselage station, are:

XWL = X + DXWL (96)
XHZ = Xo., + DXW2 (97)
XW3 = x,, + DXW3 (98)
XW4 = Xo + DXW4 (99)
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DXWN values are obtained from equation (86) for each type of distribution.

For a given mach No., dynamic pressure, load factor and flap deflection,
wingloads are determined as follows:

PZW1 is obtained from the balance equation (110)

6f
PIWZ = 5.3 *F %BF CLowr %W (100)
Where
b 5= flap deflection in degrees
I i
CF dCL/da

and is obtained by interpolation of the

K

cp Versus (CF/Cw) data in Figure 6 of Volume III, Section II

KBF is obtained from equation 29

C is obtained from equation 11

LoWR
q = dynamic pressure, psf

Sw = theoretical wing area
PIN3 - (PZNZ) (USDN2)gyp [{ . 1.0] (101)

Where (USZWZ)SOB is the unit rigid wingload at the body side due to flap
deflection and is obtained from equation 87.

F/R = matrix element F(2,4) from equation 67

PZWA = 2.0 (Np) (Wyup) [-,-l:- 1.0] (102)
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Where Nz is the specified load factor and

W

Wgp = exposed wing weight per side

%- matrix element F(3,4) from equation 67
Body nose load, PZN' is as defined as follows:
2
pZN = g2 n RN q/144
= 0.043633al&2q (103)

Where Ry is the maximum nose radius (inches), a is the angle of attack
and

PZWl/qu

a = Ch (104)
LoWF

Where Cj, v is the flexible wing 1lift curve slope and is obtained from
equation 68.

Substituting equation 104 in 103:

0.043633 (PZW1) RNZ
o = (105)

2N
Sw CLoWE

CP of the body nose load is:

vN
XN =X+ [N~ Y (106)
Horizontal tail load is Pz and is obtained from the balance equa-
tion 111. CP of the horizontal tail is:
XH = X_ . + DXH (107)

RH
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Where Xpy is the fuselage station of the leading edge of the horizontal
tail theoretical root chord, DXH is the X-distance aft of the root chord lead-
ing edge to the CP and is obtained from equation 50 in Volume III, Section II.

Airplane balance equations, where Q = 0, are as follows:

IMy = 0
0.043633 R 2

oWF

PZW2 (XCG - XW2) + PZW3 (XCG - XW3) +

PZW4 (XCG - XW4) + PZH (XCG - XH) = 0 (108)
ZP, = 0
PZW1 |1 +0—C-—'043633 RNZ PZW2 + PZW3 +
SW L oWF :
PZW4 + PZH - NN = 0 (109)

Solving equations 108 and 109 for PZW1 and PZH,

(ﬁZW)F - (PZw2) (C-F) - (PZw3) (D-F) - (PZw4) (E-F)

PZW1 = == (110)
PZH = NZW - A(PZIW1) - PZW2 - PZIW3 - PZW4 (111)
where
2
. 0.043633 RN
As1l+ (112)
ﬁ L aWF
0.043633 RNZ\
B = (XCG - XW1) + (XCG - XN) T (113)
SW L oWF ,
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C = (XCG - XW2) (114)

D = (XCG - XW3) (115)
E = (XCG - XW4) (116)
F = (XCG - XH) (117)
PIN = (A-1) PZW1 (118)

PITCHING ACCELERATION CONDITION

The pitching acceleration condition is an arbitrary condition where a
specified value of pitching acceleration is caused by an incremental hori-
zontal tailload and is superimposed on a balanced maneuver condition such that
the resulting load factor is one-half the design limit positive maneuver load

factor.

The incremental horizontal tailload required to produce the specified
pitching acceleration, Q, is:
Ql,

APZH = -12 m—_m (119)

Where, Iy = airplane pitching moment of inertia, slug ftz, and XH is
obtained from equation 107,

The maneuver load factor, N. ., is determined as follows:

M
NZL APZH
=7 T W (120)
Where NZL is the design limit maneuver load factor

W = airplane weight

Equations 96 through 118, with the following exceptions, are then used to
determine the component loads:

Nyp

F
PZW4 = -z.o(T) (g0 [ﬁ - 1.0] (121)
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Nm F - (PZW4) (E-F)

PZW] = i |

(122)

PZH = wa - A(PZW1) - PZW4 + APZH (123)

VERTICAL GUST OONDITION

The vertical gust condition consists of a +50 fps vertical gust encounter
superimposed on a 1.0g trimmed condition.

Equivalent airspeed (VE), airplane mass ratio (p), and the gust allevia-
tion factor (Kg) are detemmined using equations 115 through 119 of Volume III,
Section II, at the specified mach number and altitude.

Component loads PZWIN; = 1,0 and PZHy, «» 1 o, for the 1.0g trimmed con-
dition are determined using equations (110; ané ?111) , where Nz = 1.0 and
6¢ = 0.

Airplane normmal load factor, Nz, is determined as follows:

F
NN = A (psz +Apzw1) - 2.0 N, (Wp) (i - 1)+
Z=1.0
PZ + APZH (124)
HNz = 1.0
or.

. A(pzHL, + APINL) + PZH + APZH

NZ- Z=1.0 Z=1,0 (125)

W+ 2.0 () (§ 1)

where PZWINZ = 1,0 1S obtained using equation (110), PZHN7 . 1 g is obtained
using equation %111) » A is obtained using equation (112), F/R is the same as
that used in equation (102), and incremental gust loads are:

APZW1 = 0.100354 Kg CLaWF Sw VE (126)

APZH = 0.100354 Kg C .S, Vg
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Where CLp is obtained using equation (68) and CLoy is obtained using
equation 19 or 23 of Volume III, Section II.

Limit airload on the components are then determmined as follows:

PZNL - PZNL + APZW1 (127)
Z=1.0
F
PZN4 = - 2.0 N, mmp)(‘n - 1) (128)
PZH = P + APZH (129)
ZHNz = 1.0
PIN = (A - 1) PZW1 (130)

Airplane pitching acceleration, Q, is determined as follows:

Q = - [(XN-XCG) PZN + (XW1 - XCG) PZWl + (XW4 - XCG) PZw4 +

(XH - XCG) PZH] / 12 1y (131)

LATERAL GUST CONDITION

The lateral gust condition consist of a 50 fps lateral gust encounter
superimposed on a 1.0 g trimmed condition.

Component limit airloads PZW1, PZW4, PZH, and PZN are determined using
equations 110, 102, 111, and 1)8, respectively, with Nz = 1.0 and éf = 0.

Component limit airloads Pyy and Pyyr are determined using equations 138
and 139, respectively, from Volume III, Section II.

Airplane yawing acceleration, R, and side load factor, Ny, are deter-
mined using equations 140 and 141, respectively, from Volume III, Section II.
YAWING ACCELERATION CONDITION

The yawing acceleration condition is an arbitrary condition where a

specified value of yawing acceleration is caused by a load on the vertical
tail and is superimposed on a 1.0 g trimmed condition.
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Component limit airloads PZW1, PZW4, PZH, and PIN are detemmined using
equations 110, 102, 111, and 118, respectively, with Nz = 1.0 and GF = 0,

Equations 142 and 143, of Volume III, Section II, are used to detemmine
vertical tail limit airload, P WT* and airplane side load factor, Ny,
respectively.

LIFTING SURFACE LIMIT AIRLOAD SHEARS AND MOMENTS

Lifting surface unit airload shears and moments have been determined (for
each type of distribution) such that the panel load (per side including the
carry-over load on the body) is equal to unity. Therefore, limit airload
shears and moments are obtained by multiplying the unit values by the limit
panel loads.

WING LIMIT AIRLOAD SHEARS AND MOMENTS
Wing airload shears, bending moments, and torsional moments at the
selected n stations for weight analysis along the load reference line are
determined for a specific flight condition, as follows:
Yo" (b/Z)/CosAR = Y/CosAR (132)
S, = [PZW1(USZ1) + PZIW2(USZ2) +

‘A

PZW3(USZ3) + PZW4 (USZ4)] +2 (133)

M, = [PZWL (UMXT1) + PZW2 (UMXT2) + PZW3(UMKT3) +
A
PZW4 (UMXT4)] + 2 (134)

MY = [PZW1 (UMYT1) + PZWZ (UMYTZ) +
A

PZW3 (UMYT3) + PZW4 (UMYT4)] +2 (135)

where the unit shears and the unit bending and torsional moments are obtained
from equations 80, 82, and 83, respectively, for each type of distribution.
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Limit airload shear and moments of the side of the body stations, Ygg, in
the body reference system are obtained using unit values from equations 87, 88,
and 89 for each type of distribution.

SZ = [PZW1 (USZW(B)1) + PZW2 (USZW(B)2) +
(SOB)
PZW3 (USZW(B)3) + PZW4 (USZW(B)4)] + 2 (136)
MX = [PZW1 (UMXW(B)1) + PZw2 (UMXW(B)2) +
(SOB)
PZW3 (UMXW(B)3) + PZW4 (UMXW(B)4)] + 2 (137)
MY = [(PZW1 (UMYW(B)1) + PZW2 (UMYW(B)2) +
(SOB)
PZIW3 (UMYW(B)3) + PZW4 (UMYW(B)4)] + 2 (138)
The total limit carry over airload on the body, PZB(W), and its CP,
XBB(W), are determined as follows using unit values from equations 93
and 95:
PZB(W) = PZW1 (UPZB(W)1) + PZW2 (UPZB(W)2) +
PZW3 (UPZB(W)3) + PZW4 (UPZB(W)4) (139)
XBB(W) = wa + [PZW1 (UPZB(W)1) DXB(W)1 +
PZW2 (UPZB(W)2) DXB(W)2 + PZW3 (UPZB(W)3) DXB(W)3 +

PZW4 (UPZB(W)4) DXB(W)4] + PZB(W) (140)
EMPENNAGE LIMIT AIRLOAD SHEARS AND MOMENTS

Limit airload shears and bending and torsional moments are determined
using equations 153 through 182, in Volume III, Section II.
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Section III

OOMPUTER PROGRAM DESCRIPTION

GENERAL DESCRIPTION

The flexible airloads stand-alone program BFCNTL, has been developed to
detemmine airplane component limit airloads, including effects of wing
flexibility for specific flight case conditions. The limit airloads consist
of the airload and center of pressure (CP) for each airplane component and
airload shear, bending moment, and torsion distributions on wing and
empennage surfaces.

Punched card output data are in a format that is compatible for use as
an optional external input to the SWEEP program. Input data are generated by
the SWEEP data generation program as punched card data such that the operation
of the stand-alone program requires no further effort other than setting up
the program decks and the preparation of a control data card.

PROGRAM FUNCTIONS

The flexible airloads main program, BFCNTL, utilizes three main subrou-
tines and nine other subordinate subroutines. The main subroutines are
USPANF, BNLDSF, and SPABMF.

Subroutine USPANF is used to determine lifting surface unit airload
shears, moments, CP's and 1ift curve slopes for a specified mach number and
altitude. For the empennage (horizontal and vertical tail) surfaces, the
methods used are described in Volume III, Section II. For the wing, methods
used are described Section II herein.

Subroutine BNLDSF is used to determine the gross limit airload and CP on
each of the airplane components and the airplane inertia factors for the
specified case conditions. Methods employed are described in Section II.

Subroutine SPABMF is used to determmine limit airload shear, bending
moment, and torsion distributions on lifting surfaces for a specific flight
condition. For empennage surfaces, the methods described in Volume III,
Section II, are used. For the wing, methods used are described in
Section II herein.
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The purposes of other subordinate subroutines are as follows:

® DECRD
® RERDAT

* C#DIM2

* FCpM2

* ATMES

® WFLEX

* FLXSIC

* GLSQ
* MATRIT

Reads and stores input data in assigned dimension region
Recrranges and stores input data in assigned locations

Curve fitting interpolation routine for detemmination of
a value on a single curve

CQurve-fitting interpolation routine for the determination of
a value from a family of curves.

Determines the standard atmosphere density and the speed of
sound for a given altitude

Determines the flexible wing airload distribution data for
given types of rigid wing and load data

Determines wing structural influence coefficient data
required by WFLEX

Gives the solution to a system of linear equations.

Routine for printing matrices by rows or colums

The calling-called matrix for the program, showing the interdependence of
the subroutines, is shown in Figure 4.

MAIN PROGRAM - BFCNTL

The main program, BFCNTL, performs the following functions:

i. Reads in input ND, BC, and BF data arrays of which BC and BF are the
punched card outputs from the SWEEP II data generation program,

2. Rearranges BC input array and sets up flight condition data for
subroutine usage.

3. Calls subroutines and transfers data required to perform the airload
calculations.

4. Punches card output (ghd prints) data containing component limit
airloads and CP's and the wing and empennage limit airload shear
and moment distributions.



w |l |w] o] il o b=

253555 w| vw]l o] &
olala|<ia|l® EE = | x| & =
HEIAE AR IR AR gi 3| F

Calling

BFCNTL (MAIN) x| x| x| x| x

USPANF x x| x| x| x

WFLEX x| x| x

FLXSIC x

BNLDSF X

RERDAT x

FCADM2 X

Figure 4, Calling-called matrix for flexible airloads stand-alone program.
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Methods described in Section II are used in the coding of the program.
The logical flow chart for the main program, BFCNTL, is shown in Figure §,
and detail flow charts and program listing are presented in Appendix A.

PROGRAM DECK SETUP

The program deck setup is illustrated in Figures 6 and 7. The total
deck setup must follow the blocked order shown. Twelve subordinate subrou-
tines may be arranged in any order, but the total subroutine block must be
immediately behind the main program deck. When only one case is to be run,
the execute card must follow the last card of DP data set.

When multiple cases are to be run, subsequent-case data must be arranged
as shown in Figure 7 and placed immediately behind the first case. The
execute card must then follow the last-case DP data temination card.

INPUT DATA

Input data for the program consist of a user-prepared ND array and the BC
and BF arrays produced by SWEEP data generation option.

The input ND data array is an integer array on one card containing con-
trol factors shown in Table 1. The flexible loads program uses some coding
procedures which are identical to those contained in the airloads estimation
program in Volume III. Consequently, some of the control factors listed in
Table 1 are identical to those in Volume III. To simplify the coding proce-
dures, identical r~ontrol factors are located in the same card colums; some
columns are left blank; and some colums contain relocated and new control
data.

Figure 1 and Table 2 show basic conditions produced for each of the
various case numbers. Any basic condition not specifically defined by the
chosen case number will not be produced, even if the type factor ND(28)
through ND(36)) is entered as yes. These type factors are used for selection
or rejection of only those basic flight conditions described by the chosen
case number..

BC data array contains (1) airplane design weights, centers of gravity
locations, and moments of inertia, (2) design limit load factors, (3) design
speed-altitude poiuts, (4) airplane dimensional and geometric data, and
(5) span stations on the lifting surfaces selected for weight analysis.
These data are on punched cards in the E-format that is compatible with
decimal read subroutine DECRD. Input BC array is shown in Table 3.
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BNLDSF

Calculate and print
Component limit
airloads and centers
of pressure for
specific flight
condition

-

Main program BFCNTL

| |
' Read !
I input data I
| - |
I 1 |
| I
I [ setup frigre | |
| condition data |
| ] |
| |
|
|
|
|
|

Punch and print
component limit
airloads and centers
of pressure and
wing and tail limit
airload shear and
moment distributions

L--—------

1|

s oo can eas eap Ges e e

USPANF

Calculate and print
lifting surface unit
airload distributions,
CLC' and centers

of pressure

WFLEX

Calculate and print
flexible wing unit
alrload on strips and
wing flexible-to-rigid
ratios

SPABMF

Calculate and print
lifting surfaces limit
airload shear and
moment distributions
for specific flight
condition

Figure 5. Logical flow chart for flexible airloads stand-alone program.
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( DP data termination card

( OF data termination card

( DB data termination card

( DT data termination card

/ BFV data set
(
/BC data set  —
r

ND factors card

Figure 7. A subsequent-case data block setup.
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BF data array contains (1) design speeds at 20,000 feet, (2) wing
elastic axis location, (3) exposed wing strip weights and center of gravity
(X/C) locations, and (4) wing spanwise variation of the stiffness parameters
EI and GJ. These data are shown in Table 4, locations 1 through 106, and are
on punched cards in the same format as the BC data.

SEMIPERMANENT DATA

The program deck setup contains data sets DT, DB, DF, and DP, which
comprise semipermanent (fixed) data. These data sets contain aerodynamic data
used by subroutine USPANF in the determination of lifting surface unit airload
distributions. These data sets are the same as that contained in the SWEEP
airloads module data bank.

DT data set array is shown in Table 5. This data set contains n-span
stations and taper ratios applicable to spanwise loading parameters of DB and
DP data sets, and contains the variation with mach mumber of compressible
section lift-curve slope parameter, B/K., and section CP, X/C, for the wing
and empennage.

DB data set array is shown in Table 6. This data set contains subsonic
span loading parameter (C, C/C; Cay), variation of compressible lifting sur-
face lift-curve slope parameter (BCi,/K) versus compressible sweep parameter
(\B) and aspect ratio parameter (BA/K;) for 16 combinations of span
station (n) and taper ratio (\).

The UF data set array is shown in Table 7. This data set contains
section CP (X/C) and flap lift effectiveness parameter (KCF) variation with
flap chord ratio (Cg/Cy) and flap lift spanwise loading parameter
(Cy C/CeCAV) variation with span station (rn ) for 10 flap span ratios

(bp/by) -
DP data set array is shown in Table 8. This data set contains
supersonic span loading parameter (2I'/Vab) variation with sweep parameter

(Bm) and aspect ratio parameter (BA) for 16 combinations of span station (n)
and taper ratio (\).

Mumeric values of DT, DB, DF, and DP data contained inthe program data
bank are presented in Volume III, Section II.
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SUBROUTINE DESCRIPTIONS

SUBROUTINE RERDAT

Subroutine RERDAT reads in and rearranges the input BC data set
described in Table 3 to data locations shown in Table 9. The subroutine also
interpolates EI and GJ data BF(47) through BF(106) to obtain EI and GJ data
for subroutine WFLEX, as shown in data locations BF(114) through BF(173) of
Table 4. BF data items BF(107) through BF(113), BF(174), and BF(175) are
added to the input data list. The rearranged BC data locations and the
complete BF data sets are then used in the main program and the subprogram. .

Subroutine RERDAT logical flow chart and its program listing are shown in
Appendix A.
SUBROUTINE DECRD
Entry Name

DECRD provides the facility for reading a variable number of pieces of

real data from the input device and storing them in specified elements
(either sequential or nonconsecutive) or an array.

Usage

CALL DECRD (APR)
APR - The name of the real array to be read.

This routine is particularly helpful in programs in which the number of
input elements varies from case to case. Only information specified is
actually read into storage; remaining elements of the array are unchanged.

Data are usually written on the form Fortran Fixed 10 Digit Decimal
Data. Each card must contain an index: an integer written in colums 2
through 12. The five data fields of 12 colums each (colums 13 through
72) contain input data of the real type. However, any data field may be left
blank to indicate that the corresponding location in core is not to be
changed. Columns 73 through 80 contain the identification.

The index defines the location of the first piece of data on the card
within the array specified as the argument. This integer must be written to
the extreme right of the field. If the name of the array is not subscripted
in the CALL statement, the index can be considered eauivalent to the subscript
of a one-dimensioned array. For example, if the argument in the CALL is the
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nonsubscripted arra} name, ARk, and the index is 10, the first piece of data
on the card (colums 13 through 24) will be read into ARR (10); the third
piece of data (columns 37 through 48) will be read into ARR (12).

For an array with multiple subscripts, the index should be computed so
that the particular element can be defined by a single number. The index
may not be zero or blank.

All data items must be of the real type; they are written following the
rules for input with E-type format specification. If an exponent is written,
it must be at the extreme right of the field.

1. If the number is written without either an exponent or a decimal
point, the point is assumed to be at the extreme right of the field
(as if read with an E12.0 format).

2. If the decimal point is explicitly written, the number may be
positioned anywhere in the field.

3. If no decimal point is written but an exponent is furnished, the
point is assumed to be immediately to the left of the exponent.

When a field is left blank, no information is read into the location
corresponding to this field; the information already in this location is
unaltered. A negative zero is read as zero.

Reading is terminated by putting a negative sign in column 1 of the
last card to be read.

Error

If card colums 2 to 12 are blank or zero, the comment, "DECRD ER.
CARD = (bad card image)' is printed and execution of the job is terminated.
If a field contained in columns 13 through 72 cannot be converted by the
specified format, an error code is printed and execution of the job is
teminated.

Method

Data fields of each card are converted twice, using two formats,
SF12.0 and 10A6. The A-type conversion is used to check for blank fields.
If the field is not blank, the result of the E-type conversion is stored
in the proper element of the specified array. After reading each card, a
test is made for a negative sign in the first field; reading is teminated
if the sign is negative. The numerical data cards processed by ‘i sib-
routine is discussed in S=ction I of Volume IX.
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SUBROUTINE USPANF

Subroutine USPANF is used to determine the lifting surface unit airload
shears, moments, CP's and lift-curve slopes for a combination of mach
number and altitude specified by the main program.

Methods used for the horizontal and vertical tail surface are the same
as those described in Volume III, Section II, for the SWEEP program.

Methods used to develop the wing unit airload data include the airload
distributions caused by wing bending and torsional deflections resulting
from (1) 1lift due to angle of attack, (2) 1lift due to flap deflection, and
(3) inertia load due to vertical acceleration. The applicable methods are
described in Section II herein.

FUNCTION C@DIM2

Function CADIM2 is an interpolation routine for the determination of a
point on a single curve fitted through four points.

FUNCTION FC@DM2

Function FCPIM2 is an interpolation routine for the determination of a
point from a family of fittad curves. The subroutine utilized OADIM2 for each
family curve interpolation.,

SUBROUTINE ATM@S

Subroutine ATMJS is used to determine the 1962 U.S. Standard Atmosphere
density and spced of sound for a given geometric altitude. The methods
employed can be followed in the logical flow chart and the program listing
shown in Appendix A.

SUBROUTINE WFLEX

Subroutine WFLEX solves the wing static aeroelastic problem for the a,
6 FLAP, and vertical inertia load effects. The subroutine uses disttibuted
rigid airload data, along with flight condition data and structural influe-
ence coefficients from subroutine FLXSIC. The logical flow chart and the
program listing are shown in Appendix A.
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Usage

All input-output data, except printed results and diagnostic printed
results, are passed through the call statement.

CALL WFLEX (AFW, AFWCP, AFWF, AFWDF, F, YEIGJ, EI, GJ, CR, B@2, BLBS,
ANGLE, FSLERT, ANGERA, FSEA@, WLAMDA, Q, CLAR, E@TA, SW, N@EIGJ, NS,
ICALCS, IPRINS, IPRINA)

Definition of call statement variables:

() = program dimensions

Variable ( ) Data Type Description
AFW(10,3) INPUT Rigid ioad distributions on NS number of

chordwise strips. Stored by columns:
Col 1, a load; col 2, bppap load;
col 3, inertia load for Nz =1,

AFWCP(10,3) INPUT Chordwise centers of pressure for rigid
loads provided in AFW. These X/C values
are stored by columns.

AFWF(10-3) OUTPUT Total flexible load distributions, by
column.

AFWDF(10,3) OUTPUT Delta flexible load distributions, by
column.

F(3,4) OUTPUT Summation of load distributions: Col 1,

Zrigid loads; col 2, X total flexible
loads; coi 3, X delta flexible loads;
col 4, flexible-to-rigid ratios.

YEIGJ(20) INPUT Elastic axis y-coordinates for wing EI
and GJ. NOTE: YEIGJ (1) must equal
zero, (in.).

EI(20) INPUT EI, wing bending stiffness (1b in?).

GJ(20) INPUT GJ, wing torsional stiffness (Ib in%).
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Variable () Data Type Descriptions

R INPUT Chord of wing at fuselage ¢ (in.).

B@2 INPUT Wing semispan, b/2 (in.).

BLBS INPUT Butt line of body side (in.).

ANGLE INPUT Angle of wing leading edge sweep (deg).

FSLERT INPUT Fuselage station of wing leading edge
at fuselage ¢ (in.).

ANGEA INPUT Angle of wing elastic axis sweep (deg)
FSEAQ INPUT Fuselage station of elastic axis at §
(in.).

WLAMDA INPUT Wing taper ratio, xw = %‘—;&p—

Q INPUT Dynamic pressure, q (psf).

CLAR INPUT Clo /RAD for the wing.

EQTA INPUT Exposed/total load ratio, for
distributions.

SW INPUT Wing area (ftzj.

NOEIGJS INPUT Mumber of values in the YEIGJ, EI and

GJ lists, 20 maximum.

NS INPUT Numbers of load strips on the exposed
wing, 10 maximum.

ICALCS INPUT Controls calculation of SIC matrix:

0 - Do not calculate SIC
1 - Do calculate SIC
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Variable () Data Type Descriptions

IPRINS INPUT Controls printing of SIC matrix and
other diagnostic data from subroutine
FLXSIC:

0 - Do not print SIC
1 - Do print SIC
NOTE: IPRINS has no effect if ICAICS = 0
IPRINA INPUT Controls printing of diagnostic data
from subroutine WFLEX:

0 - Do not print diagnostic data
1 - Do print diagnostic daca

Restrictions

The number of load strips, NS, may not exceed 10, and the mmber of EI
and GJ values, NEIGJ, may not exceed 20.

Error Returns

If NS is greater than 10, or NJEIGJ is greater than 20, an error
message will be printed and execution will be stopped.

Method

The method is described under the heading ''Wing Aeroelastic Distributions"
in Section II. Note that when using subroutine GLSQ to obtain the solution,
the D-matrix must be reloaded into A for each load effect, because GLSQ
destroys A in the solution process. Also, note that region A must. be cleared
prior to loading D for at least two more rows than the number of rows in D,
in order for the GLSQ solution to work.
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Operational Notes

Rigid load distributions that enter into WFLEX are for loads on the
exposed wing panel only and can be handled several ways. But regardless of
the manner in which it is used, the o load, per radian, on the exposed wing
panel due to a unit angle of attack is computed in the program as:

NS
LOAD = CLAR'EQTASQASS* D  ARW(I,1)
I=1

The variable EATA in application to this flexible airloads program
is equated to 1.0.

SUBROUTINE FLXSIC

Using wing geometry and wing EI and GJ distributions as input data,
subroutine FLXSIC computes wing structural influence coefficient for use
in the static aeroelastic solution that is calculated in subroutine WFLEX.
The logical flow chart and program listing are shown in Appendix A.

Usage

All input-output data, except printed diagnostic results, are passed
through the call statement.

CALL FLXSIC (SICBAR, YEIGJ, EI, GJ, CR, B@2, BLBS, ANGLE, FSLERT,
ANGEA, FSEAP, WLAMDA, X(@CFWD, X@CAFT, N@EIGJ, NS, IPRINS)

Definition of call statement variables:
( ) = Program dimensions

Variable ( ) Data Type Description

SICBAR(10,20) OUTPUT Matrix of strip slopes due to loads at
the SIC points (radians/1b).

YEIGJ (20) INPUT Elastic axis y-coordinates for wing EI

and GJ. NOTE: YEIGJ(1) must equal
zero, (in.).
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Variable ( ) Data Type
EI(20) INPUT
GJ(20) INPUT
CR INPUT
B@2 INPUT
BLBS INPUT
ANGLE INPUT
FSLERT INPUT
ANGEA INPUT
FSEAQ INPUT
WLAMDA INPUT
X@CFWD INPUT
X@CAFT INPUT
NZEIGJ INPUT
NS INPUT
IPRINS INPUT

Description

EI, wing bending stiffness (1b-in’).
GJ, wing torsional stiffness (lb-in?).
Chord of wing at fuselage ¢ (in.).
Wing semispan, b/2 (in.).

Butt line of body side (in.).

Angle of wing leading edge sweep (deg).

Fuselage station of wing leading edge
at fuselage ¢ (in.).

Angle of wing elastic axis sweep (deg).

Fuselage station of elastic axis at §
(in.).

. . tip chord
Wing taper ratio, A ¢ —Qrm—

Strip X/C forward, used as 0.15.
Strip X/C aft, used as 0.65.

Mmber of values in the YEIGJ, EI and
GJ lists, 20 maximum.

Number of load strips on the exposed
wing, 10 maximum.

Controls printing of SIC matrix and
other diagnostic data:

0 - Do not print SIC and diagnostic
1 - Do print SIC and diagnostic
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Restrictions

The number of load strip, NS, may not exceed 10, the mmber of EI and
GJ values may not exceed 20, and YEIGJ(1) must equal 0.

Error Returns

In the logic of this routine, it is possible for y in the swept elastic
axis system to became negative for a highly swept wing. If it does, this
subroutine will print out an error message and execution will be stopped.

Method

The method is described under the heading '"Wing Structural Influence
Coefficients," in Section II. Coding, with the exception of the technique
used in integration of equation 44 is self-explanatory. Integration of
equation 44 is accomplished trapezoidally after the input EI and GJ data
are first interpolated, using the CADIM2 subroutine, to obtain 20 intervals
between the ¢ and the point at which the deflection is being computed. For
example:

y 21
[f () ax = > (€%)y. + £(F);) 4>
0 i=2
where
ax = y/20

Note that if the value of y ever exceeds the value of N, the integration
upper limit is changed to m by simply zeroing out the value of the func-
tions of A in both the bending and torsion integrals.
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Recommended Operational Data Setup

In the formulation of the aeroelastic solution that uses the SIC matrix
from this subroutine, the wing elastic axis (EA) has been carried inboard of
the side of the body to the body centerline. In general, the wing carry-
through structure does not extend along the wing EA, but is directed across
the airplane. Since bending across the airplane does not affect wing angle of
attack, and the wing is effectively fixed in torsion at the sice of the body,
stiffness EI and GJ inboard of ‘the body side should be arbitrarily greatly
increased.

EI and GJ recomended data setup:

es

YBODY SIDE = cos A

Ep
YEIGJ(1) = 0. EI(1) = 10 EI ¢ GJ(1) = 10 GJyg
(2) = 0.25 (2) = 10 EIq (2) = 10 GJyg
(3) = 0.50 ¥ (3) = 10 EI (3) = 10 GJyg
@) = Vg (4) = El (4) = GIyg
(5) = 1.10 Yo (5) = See Note (5) = See Note

NOTE: Data for point 5 and on should be taken fram the EI and GJ curves.
Sufficient data points should be input (20 maximum) to give good defi-
nition of the curves when fitted with C@DIM2.

Subroutines USPANF through RERDAT set up EI and GJ values in accordance
with the preceding note and interpolate EI and GJ input data BF(47) through
BF(106) to obtain 15 additional points outboard of YEIGJ(5). Resulting EI
and GJ data are then located in BF(114) through BF(173), as shown in Table 4,
for transfer to this subroutine.

SUBROUTINE GLSQ

This FORTRAN subprogram gives the least squares solution to a2 system of
overdetermined linear equations Bx = C, where B is an N x M matrix, with
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N 2M and C a column vector of dimension N. The logical flow chart and the
program listing are shown in Appendix A.

Calling Sequence
CALL GLSQ (A, X, IL, N, M, ALPHA, El, E2)

Definition of call statement variables:

( ) = program dimensions

Variable ( ) Data Type Description
A(25,26) INPUT The augmented matrix B,C of at least

dimension (M+2) x (M+1) or N x (M+1),
whichever is greater.

X(26) OUTPUT The vector where the solution is stored
and must be of at least dimension M + 1.

IL(26) INPUT A temporary vector of at least dimen-
sion M+l.

N INPUT Number of rows of B.

M INPUT Number of columns of B.

ALPHA OUTPUT The square root of the sum of the

squares of the residuals.
El and E2 INPUT Two nonnegative numbers which are

smali compared to the size of the num-
bers in the input matrix.

Restrictions

This subprogram has a dimension statement A(25, 26), X(26), IL(26).
The calling program must be dimensioned exactly the same. The input data, A,
are destroyed during the computation.
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Method

The method is discussed under ''Wing Aeroelastic Distributions," in
Section II. In the triangularization process, if any number to be annihilated
is already less in magnitude than El, it is considered to be zero and the
computations to annihilate the element are omitted.

Let bj denote the jth columm of B. If the routine finds that bk is a
linear combination of by,..., bk.1, then it sets the kth companent of x to

zero, The routine considers that such a linear combination holds whenever
numbers A\j,...., Mk-1 can be found so that the length of the vector

bk - (klb1 oot "k-l bk-l)

is less than E2.

Operational Notes

When using GLSQ to solve an exactly determminate set of linear equationms,
the dimension of the augmented matrix must be at least A(M+2, M+1), and the
region must be cleared prior to loading the augmented matrix.

SUBROUTINE MATRIT
Subroutine MATRIT prints matrices by row or column in format IP8E13.5

and with a heading statement that is transmitted in the calling sequence.
The logical flow chart and the program listing are shown in Appendix A.

Usage
CALL MATRIT (AMN, NR, NC, NRMAX, MTYPE, IPRIN, HEAD)

Definition of call statement variables:

( ) = Program Dimensions
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Variable ( ) Data Type Description

AMN(1) INPUT Matrix to be printed.
NR INPUT Number of rows in AMN.
NC INPUT Number of column in AMN.
NRMAX INPUT Maximum number of rows in AMN,
dimension in calling program.
MTYPE INPUT Type of matrix:
1 - real

-1 - complex (do not use)

IPRIN INPUT Print by rows or colums:
1 - print by rows
2 - print by columns

HEAD(100) INPUT Format of matrix heading; for

example,
24H (IHI 20X, 11HMASS, MATRIX).

SUBROUTINE BNLDSF

Subroutine BNLDSF is used to determine the limit airloads and CP's on
the airplane components, and up inertia factors for the flight conditions
specified by the main program. There are five types of flight conditions for
which the airloads can be determined; namely, (1) the balanced maneuver con-
dition, (2) the pitching acceleration condition, (3) the vertical gust condi-
tion, (4) the lateral gust condition, and (5) the yawing acceleration
condition. The methods used in deriving the component loads for these
conditions are presented in Section II and include the aeroelastic effects of
wing flexibility.

The subroutine BNLDSF logical flow chart and the program listing are
shown in Appendix A.
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SUBROUTINE SPABMF

Subroutine SPABMF is used to determine the net limit airload shear and
moments along the load reference line on the wing, horizontal tail, and verti-
cal tail surfaces. The methods employed are described in Section II. The
logical flow chart and the program listing are shown in Appendix A.

OPERATING CORE, TOM
The program operating core, TOPM, is dimensioned to 4,400 locations and
is blocked into data regions as shown in Table 10. A description and the

location of the data within each data block can be found in the tables
referenced by Table 10.

OUTPUT DATA DESCRIPTION

GENERAL

Primary output of the program is a deck of cards containing airplane
component limit airloads, CP locations, and wing and empennage limit airload
shears and moments at the spanwise stations along the load reference line
selected for weight analysis. Punched card output is in a format for use as
an optional airloads input to the SWEEP program. Printout of other data is
also included for visual inspection of the results of final and intermediate
calculations.

PUNCHED CARD OUTPUT

The output punched cards list limit airloads data in an E-format to be
read by subroutine DECRD in SWEEP. A sample printout of data on the punched
cards is shown in Table 17. Each card contains a DECRD array index number,
followed by five decimal data items and the card identification number.

A "yes'" in control factor ND(40), per Table 1, will provide the punched card
output.

Output data array is described in Table 15. The index number punched on

each card corresponds to the location within the array for the first item of
decimal data on the card.
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Condition identification number and component loads identification
nunbers are assigned by the program and are included in the punched output
deck for each condition. Component loads identification numbers also appea:
in the printed output.

Condition ID

The condition identification number is punched in columns 13 to 24 of
card 1 and is defined as follows:

_clﬁ N W v
# & K

Case number Wing 1D Vertical tail ID
(Refer to table 2) | = Fixed 5 = Single tai!
2=VS - fwd 6 = Dual tall
Y 3 = VS - aft 7 = T-tail

Condition array ID
(Refer to table 18)

Fuselage Loads ID

The fuselage loads identification number is punched in columns 25 to 36
of card 1 and appears on the components load and CP printed page. It is
defined as follows:

CACNO

W in&].oa& ID

The wingloads identification number is purched in columns 25 to 36 of
card 5 and appears on the wing spanwise loads printed page. It is defined as
follows:

CA QW
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Horizontal Tail Loads ID

The horizontal tailloads identification number is punched in colurns 61
to 72 of card 15 and appears on the horizontal tail spanwise loads printed
page. It is defined as follows:

CA ON 4

Vertical Tail Loads ID

The vertical tailloads identification number is punched in columns 37
to 48 of card 26 and appears on the vertical tail spanwise loads printed page.
It is defined as follows:

ANV

Punched Card ID

The punched output identification and card sequence number is punched in
colums 73 to 80 and is defined as follows:

1 CA CN SEQ

N

Signifies sweep 1 data Three-column sequence No.

PRINTED OUTPUT DATA

The program will always print the data in Tables 19 through 28. With a
"yes'' in ND(41), per Table 1, a listing of the data on the punched output
cards will be printed as shown in Table 17. With a '"yes" in ND(44), per
Table 1, FLXSIC matrices will be printed as shown in Tables 29 through 35.
With a "yes" in ND (45), per Table 1, WFLEX matrices will be printed as shown
in Tables 36 through 38.
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Data of Primary Interest

Data of primary interest to the user consisf of (1) that which is
descriptive of the data that are to be used as optional input to SWEEP, and
(2) input data for the main program, BFCNTL.

Table 17 shows a sample printout of the data on the output punched cards.
Data items can be identified using Table 15. Table 25 presents a summary
of the component limit airloads, CP's, and the airplane inertia factors.
Tables 26 through 28 show sample printouts of limit airload shears and
moments along the load reference line for the wing, horizontal tail, and
vertical tail, respectively. Tables 19 and 20 show sample printouts of the
program input BC and BF data sets; the data items can be identified using
Tables 3 and 4.

Intemmediate Step and Diagnostic Data

Tables of printed data presenced are divided intc three groups. The
first group consists of intermediate-step results produced by sutroutine
USPANF as spanwise unit airload distributions for the wing, and harizontal and
vertical tails are developed. The second group consists of optional diag-
nostic matrix data produced by subroutine FLXSIC. The third group consists of
optional diagnostic matrix data produced by subroutine WFLEX.

Intermediate-Step Data

Tables 21, 23, and 24 are produced by subroutine USPANF. Table 22 is
produced by subroutine WFLEX, which is subordinate to subroutine USPANF.
These printed data are not optional in the current configuration of the flexi-
ble airloads stand-alone program. Table 21 shows sample printouts of the
rigid loading data extracted from the data bank aerodynamic data for the
condition mach number and the subject air vehicle configuration. Table 22
shows sample printouts of riqgid loading and CP data inputed to subroutine
WFLEX by subroutine USPANF, and aeroelastic loading data returned to sub-
routine USPANF by subroutine WFLEX. Table 23 shows sample printouts of final
unit spanwise loading distributions sor the wing, and horizontal and vertical
tails developed by subroutine USPANF. Table 24 shows sample priniuvuts of
spanwise variation of unit shear, bending moment, and torque for three sur-
faces as developed by subroutine USPANF and stored in data region BU.
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FLXSIC Diagnostic Data

Tables 29 through 35 present optional diagnostic data produced by
subroutine FLXSIC. If control factor ND(44) is assigned a value of 1, these
tables will be produced. A value of 0 will eliminate them. Table 29 shows
a sample printout of the data inputed to subroutine FLXSIC by subrou-
tine WFLEX. Table 30 shows a sample printout of the elastic axis geametry
developed by subroutine FLXSIC. Tables 31 through 35 show sample printouts of
the various structural influence coefficient (SIC) matrices developed by
subroutine FLXSIC. Subroutine FLXSIC is recalled only when there is a change
in wing geometry or stiffness properties.

WFLEX Diagnostic Data

Tables 36 through 38 present optional diagnostic data produced by sub-
routine WFLEX. If ccentrol factor ND(45) is assigned a values of 1, these
data will be produced. A value of 0 will eliminate them. T:“1le 36 shows a
sample printout of the pertinent aerodynamic data used by subroutine WFLEX.
Table 37 shows a sample printout of the aeroelastic D-matrix developed by the
subroutine. Table 38 shows sample printouts of the rigid and the resultant
flexible loads matrices. Subroutine WFLEX is called whenever mach number,
dynamic pressure, wing geometry, wing stiffness properties, or wing weight
distribution change.
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TABLE 1. ND CONTROL FACTORS CARD
Card ND | ND ND ND | ND ND | ND ND
Control Factor Col 13 14 15 23 24 25 26 27
SWEEP A/V class 2
Fighter 1
Attack 2
Bomber I 3
Bomber II 4
Cargo-assault 5
Cargo-transport 6
Wing Type
Fixed wing 3,4 -1
Variable sweep 4 1
Vertical tail type
Single tail 5,6 5 |
Dual tail 6 0
T-tail 6 1
Loads requirements
Select components 21,22 -1
Fuselage No | 23,24 -1
Yes 24 1
Wing No | 25,26 -1
Yes 20 1
Horizontal tail No | 27,28 -1
Yes 28 i
Vertical tail No | 29,30 -1
Yes 30 1
Do all components 22,24 1 0 0 0 0
26,28
& 30
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TABLE 1. ND CONTROL FACTORS CARD (COONT)
Card | ND [ND [ND|{ND|ND | ND| ND|ND|ND| ND| ND
Control Factor Col | 282930 31]|32|33|34|35]|36|40]41
Basic condition types*
Pos bal flight No|31,32| -1
Yes 321 1
Neg bal flight No|33, 34 -1
Yes 34 1
Maneuvering flap No|35,36 -1
Yes 36 1
1 g trim flap No|37,38 -1
Yes 38 1
Pos vert gust No|39,40 -1
Yes 40 1
Neg vert gust No|41,42 -1
Yes 42 1 |
Lateral gust No (43,44 -1
Yes 44 1
Pitch acceler No (45,46 -1
Yes 46 1
Yawing acceler No (47,48 -1
Yes 48 1
T'unch output factors
Punched output No|55,56 -1
Yes 56 1
Print check No|57,58 -1
Yes 58 1
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TABLE 1. ND CONTROL FACTORS CARD (COONCL)

Card ND ND ND ND ND

Control Factor Col 42 43 44 45 46
Input control factors -
No. of values |
YEIGJ, EL, GJ 59,60 20
(20 Maximum)
Wing weight strips 61,62 10
Diagnostic printing
FLXSIC matrices No 64 0
Yes 64 1
MFLEX matrices No 66 0
Yes 66 1
Case No. 67,68 LA

®Basic conditions not specifically defined by the chosen case number will
not be produced, even if the type factor is entered as yes. Type factors
are used for the selection or rejection of basic conditions described by

the chosen case number.

**Enter case number selected from Table 2 (the number must be right-
adjusted in the field).
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TABLE 2. CASE NUMBER CONDITIONS

Condition
Case No. | Condition No. Type Mach No. Altitude
104 WV + Bal man.
106 Wv Pitch accel h,1
107 wWv Yaw accel
108 wWv + Bal man.
1 110 WV Pitch accel MLl,l hl’z
111 WV Yaw accel
112 WV + Bal man.
114 WV Pitch accel h1,3
115 WV Yaw accel
208 WV + Bal man.
210 Wv Pitch accel hl,z
211 WV Yaw accel
2 M1,2
212 WV + Bal man.
214 W " Pitch accel h1,3
215 Wv Yaw accel
312 Wy + Bal man.
3 314 W Pitch accel M1,3 h1,3
315 WV Yaw accel
401 wv + Vert gust
402 W - Vert gust h1 1
4 403 WV Lat gust MHl 1 ’
405 wv - Bal man. ’
409 Wv - Bal man. hy 2
413 WV - Bal man. h1’3
501 wv + Vert gust | My 2 or
502 Wv - Vert gust h or 20,000 ft*
5 505 WV Lat gust Mi1, 20,000 ftr| 1,2
509 wv - Bal man. hy,2
S13W | - Bal man. ", 2 hy 3
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TABLE 2. CASE NUMBER CONDITIONS (CONCL)

Condition
Case No. | Condition No. Type Mach No. Altitude
601 wWv + Vert gust M-II,B or
6 602 WV - Vert gust h1 e 20,000 ft*
603 WV Lat gust MH].. 20,000 ft* '
613 W - Bal man. Mn,3 h,3
704 WV + Bal man.
705 WV - Bal man. h1 1
706 WV Pitch man. !
707 WV Yaw man.
708 WV + Bal man.
709 WV - Bal man.
7 710 WV Pitch man. 0.90 hy 2
711 WV Yaw man.
712 W + Bal man.
713 WV - Bal man. h
714 W Pitch man. 1,3
715 WV Yaw man.
8 816 WV Flap man. 1.5 Voo SL
9 917 WV 1 g flap trim 1.2 Vg, SL
1018 Wv + Vert gust
1019 wv - Vert gust h2 1
10 1020 wv + Bal man. ’
1021 WV - Bal man. Mi2,1
1022 wv + Bal man. h
1023 wWv - Bal man. 2,2
1118 WV + Vert gust My2,2 or 4
1119 W - Vert gust M2, 20,000 ft* h2,2 ox20,000 5%
11
1122 wv + Bal man. h
1123 W | - Bal man. 2,2 2,2
*Gust conditions maximum altitude is 20,000 feet.
W= 1 = Fixed wing V = 5 = Single vertical tail
2 = Variable sweep (fwd) 6 = Dual vertical tail

3 = Variable sweep (aft) 7=T - tail
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TABLE 5. DT DATA SET

Location Description
UT (1) is equivalent to TOMM (100)
1-4 (1) through (4), span station, fraction of semispan
5-9 (1) through (4), taper ratios
9 - 20 M(1) through M(12), mach numbers
21 - 32 B/K (1) through B/K (12), compressible section lift-
curve slope parameters
33 - 44 X/C (1) through X/C (12), wing section center of
W . W !
pressure locations, fraction of chord
45 - 56 X/Cp (1) through X/Cr (12), tail section center of

pressure locations, fraction of chord
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TABLE 6. DB DATA SET

Location Description
DB(1) is equivalent to TOOM (156)
1-6 Ag(1) through Ag6), compressible sweep angle (deg)
7-13 BA/K(1) through BA/K(6), aspect ratio parameter
14 - 55 Table of C gy C/( Cpy values versus Ag and BA/K for n1),
NM1) (42 values per table)
56 - 97 Same as 14 - 55, except for n(1), A (2)
78 - 139 Same as 14 - 55, except for n(1), \(3)
140 - 181 Same as 14 - 55, except for n(1), \(4)
182 - 349 Same as 14 - 181, except n = n(2)
350 - 517 Same as 14 - 181, except n = n(3)
518 - 685 Same as 14 - 181, except n= n(4)
686 - 727 Table of BCp,/K values versus Ag and BA/K for \(1)
(42 values per table)
728 - 769 Same as 686 - 727, except A= \(2)
770 - 811 Same as 686 - 727, except A = \(3)
812 - 853 Same as 686 - 727, except A= 2\ (4)
NOTES: Table data order = values for BA/K(1), Ag(1) through Ag(6)
BA/K(2), Ap(1) through Ag(6), etc

Refer to Table 2 in Volume III, Section II, for numerical values of

data.
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TABLE 7. DF DATA SET

Location

Description

DF(1) is equivalent to TOM (1009)

1-5
6 - 10
11 - 15
16 - 25
26 - 36
37 - 146

Cp/Gy(1) through Cp/Cy(5), flap chord to wing chord ratios

X/C (1) through X/C (5), centers of pressure of section
lift due to flap deflection, fraction of wing chord

Kcg (1) through Keg (5), flap lift effectiveness
parameters

bg/by (1) through bg/by (10), flap span to wingspan
ratios

n (1) through n(11) wingspan stations, fraction of
wing semispan

Table of C, C/Cp, Cay values versus n, bg/b,

NOTE: Table data order = values for bg/b,(1), n (1) through n(11)

bg/by(2), n(1) through n(11), etc

data.

Refer to Table 3 in Volume III, Section II, for numberical value of
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TABLE 8. DP DATA SET

Description

DP(1) is equivalent to TOMM (1155)

Location
1-5§
6 - 14
15 - 59
60 - 104
105 - 149
150 - 194
195 - 374
375 - 554
555 - 734

BA(1) through BA(S), aspect ratio parameter
Bm(1) through Bm(9), sweep parameter

Table of 2I/Vab values versus Bm and BA for n (1),
A (1) (45 values per table)

Same as 15 - 59, except for n (1), \(2)
Same as 15 - 59, except for n(1), A\ (3)
Same as 15 - 59, except for n(l), X2(4)
Same as 15 - 194, except n= n(2)
Same as 15 - 194, except n= n(3)
Same as 15 - 194, except n= n(4)

NOTE: Table data order = Values for BA(1), Bm(1) through Bm(9), etc

data.

Refer to Table 4 in Volume III, Section II, for numerical values of
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TABLE 11. COONDITION DATA REGION BB#*#*

Location : Description
BB(1) is equivalent to TOAM(2953)
1 W, airplane weight (1b)
2 XCG, airplane center of gravity location (FS) (in.)
3 Iy, airplane pitching moment of inertia (slug ft2)
4 I7, airplane yawing moment of inertia (slug ft2)
3 b, flap deflection (deg)
6 Nz, airplane limit normal load factor
7 Q, airplane pitching acceleration (rad/sec?)
8 R, airplane yawing acceleration (rad/sec2)
9 hp, altitude (ft)
10 M, mach number
11 Previous condition altitude (ft)
12 Wing ID number®
13 Horizontal ID number = 4.0
14 Vertical tail ID number**
15 Condition number
16 Previous condition mach number
17 q, dynamic pressure (psf)
18 CLawr» Wing rigid lift curve slope per radian
19 Vg, equivalent airspeed (knots)
20 Balance Nz, airplane normal load factor for balanced part

®Fixed wing ID = 1.0
Variable wing forward ID = 2.0
Variable wing aft ID = 3.0

*#Single vertical tail ID = 5.0
Dual vertical tail ID = 6.0
T-type vertical tail ID = 7.0

***This condition data region is set up for each condition
by the main program BFCNTL.
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TABLE 12. PARAMETER DATA REGION BS FOR SUBROUTINES

USPANF AND BNLDSF

Location

Description

USPANF

BS(1) is equivalent to TOMM(2973)

W 0 N O & L NN =

o S - S Sy WP
(7 N I S =

16

17

18

19

20

B/K, subsonic lift-curve slope parameter

M, mach number

(X/C)CP. section center of pressure, fraction of chord
Yps, wing-body interface station (BL), or horizontal
AL, surface leading edge sweep angle (deg)

Ay, surface elastic axis sweep angle (deg)

2\pa, surface load reference line sweep angle (deg)

Xy g, fuselage sta. of root chord leading edge (in.)
Xgpa, fuselage sta of elastic axis at root chord (in.)
C;i, root chord of theoretical surface (in.)

\g, taper ratio of theoretical surface

Ag, aspect ratio of theoretical surface

Sg, area of theoretical surface (ft?)

bg/2 or by, span of surface panel (in.)

Ngg Orngy, span station of surface-body interface
station, fraction of panel span

(X/C)pas location of load reference line in fraction of
chord

Yro/bw/2, wingspan station of outboard end of flap,
fraction of semispan

Yrp1/by/2, wingspan station of inboard end of flap,
fraction of semispan

AB» Subsonic compressible sweep parameter, or BA,
supersonic aspect ratio parameter

BA/K, subsonic aspect ratio parameter, or Bm, supersonic
sweep parameter
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TABLE 12. PARAMETER DATA REGION BS FOR SUBROUTINES

" USPANF AND BNLDSF (CONCL)

Location

Description

BNLDSF

BS(1) is equivalent to TOPM(2973)

1
2
3
4

W 0 ~3 O W

10
11
12
13

14

16

17
18
19
20

Sg, area of theoretical surface (ft2)
Xpg» fuselage station of root chord leading edge (in.)
bs, span of surface (ft)

PIN/PIW1, ratio of fuselage nose normal load to wing
normal load due to angle of attack

A, balance equation factor

B, balance equation factor

C, balance equation factor

D, balance equation factor

E, balance equation factor

F, balance equation factor

WAP, exposed wing panel weight per side (1b)
Kcp, flap lift effectivene:s parameter

PIW1, wing flexible normal airload due to angle of
attack (1b)

PIW2, wing rigid normal airload due to flap deflection (1b)

PIW3, wing increment flexible normal airload due to flap
deflection (1b)

PIW4, wing flexible normal airload due to vertical
acceleration (1b)

PZH, horizontal tailload (1b)
M, airplane mass ratio
l(g, gust alleviation factor

APZHQ, incremental horizontal tailload due to pitching
acceleration (1b)
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TABLE 13. THE BD DATA REGION

Location

Description

BD(1) is equivalent to TCPM(2993)

1-4

5-20

5-20

21-25

26-30

31-43

31-43

44

45-57

45-57

58-68

69

70- 80

81-88

81-84

85-88

89

89

Array (YA) - subsonic (BCpo/K) table values

Array (YB) - rigid loading table values (first)

Array (YB) - loading at weight analysis stations (second)
Array (YC) - rigid loading values at aero data stations

Array (ED) - aero data stations fraction of span

Array (ESS) - strip boundary stations (first) fraction
of span

Array (ESS) - weight analysis stations (second)
fraction of span

No. of wing outer panel weight strips per side
Array (YSS) - strip running loadings (first)

Array (YSS) - torsional loading at weight analysis
station (second)

Array (DPA) - strip alpha loads

Flap lift center of pressure, fraction of wing chord (X/C)
Array (DPF) - flap effects strip loads

Subroutine FCPDM2 factors

Array (T)

Array (YX)

PWD - summated strip alpha loads to centerline (first)

Summated AFW (I,1) - exposed rigid alpha loads (second)
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TABLE 13. THE BD DATA REGION (CONT)

Location Description

90 Pw1 - pWQ less half carry-over strip load (first)

90 Summated AFWF (I,1) - exposed flexible alpha loads
(second)

91 Summated wing outer panel weights (first) (1b)

91 Ratio of exposed alpha load to total (second) (dec) = 1.0
92 Atmospheric density (Rho) (slugs/feet cubed)

93 Factor (NB-I) - number of strips counter
94 Speed of Sound (ah) (knots)

95-105 Array (ECP) - strip center of pressure, fraction of span
106-116 Array (ULN) - running load at weight analysis stations
117-129 Array (DXS) - swept torsion ams (in.)

130-140 Array (UIN) - torsional loading at weight analysis

station (in.)

141 Parameter K sweep
142 Fraction of swept chord of reference axis, X/C
143 Fraction of swept chord of center of pressure, X/C
144 Swept chord (in.)

145 Expression: 1.0-Ks (1.0-(X/C) of RA-(X/C)s of RA)

146 Integral of Array (ULN) versus (Y/b/2) - tip to root
147 KUZ, span-loading normalizing parameter
148 Swept bending moment at body side (in./1b)

149 Swept torsion moment at body side (in./lb)
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TABLE 13. THE BD DATA REGION (CONCL)

Location Description

150 Empennage swept torsion arm at body interface (in.)

151 Body nose load due to vertical gust (1b)

152 Exposed wingload due to vertical gust (1b)

153 Body carry-over load due to vertical gust (1b)

154 Horizontal tailload due to vertical gust (1b)

155 Parameter KPA

156 Wing semispan (first) (in.)

156 Horizontal tail semispan (second) (in.)

156 Vertical tail span (third) (in.)

157 Wing reference axis sweep angle (first) (deg)

157 Horizontal tail reference axis sweep angle (second) (deg)

157 Vertical tail reference axis sweep angle (third) (deg)

158 Swept distance from vertical tail root to horizontal
tail plane (in.)

159 dust load factor

160 Wing inertial aeroelastic load due to vertical gust (1b)
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TABLE 14. THE BU DATA REGION

Location

Description

BU(1) is equivalent to TuM (3153)

1-60
1
2

9-21
22-34
35-47
48-60
61-107
61
62
63
64
65
66

67

Data for wing flexible alpha effects

Flexible 1lift curve slope

X-distance from apex to total load CP (in.)
Y-distance from CL to exposed load CP (in.)
X-distance from apex to exposed load CP (in.)
X-distance from apex to carry-over load CP (in.)
Airload unit shear at side of body (dec)

Airload unit bending moment at side of body (in.)
Airload unit torsion moment at side of body (in.)
13 load stations, percent span from tip to ¢ (dec)
Airload unit shears from tip to centerline (dec)
Airload unit bending moments - swept (in.)
Airload unit torsion moments - swept (in.)

Data for wing rigid flap effects

Parameter KBF

X-distance from apex to total load CP (in.)
Y-distance from CL to exposed load CP (in.)
X-distance from apex to exposed load CP (in.)
X-distance from apex to carry-over load CP (in.)
Airload unit shear at side of body (dec)

Airload unit bending mament at side of body (in.)
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TABLE 14. THE BU DATA REGION (OONT)

Location Description

68 Airload unit torsion moment at side of body (in.)

69-81 Airload unit shears from tip to centerline (dec)

82-94 Airload unit bending moments - swept (in.)

95-107 Airload unit torsion moments - swept (in.)

108-166 Data for horizontal tail effects

108 Horizontal tail lift curve slope

109 Parameter KH(B)

110 YH distance from centerline to horizontal tailload CP (in.)

111 XH distance from HT apex to HT load CP (in.)

112 Airload unit shear at side of body (dec)

113 Airload unit bending moment at side of body (in.)

114 Airload unit torsion moment at side of body (in.)

115-127 Thirteen HT load stations - percent spantip to
centerline (dec)

128-140 Airload unit shears from tip to centerline (dec)

141-153 Airload unit bending moments - swept (in.)

154-166 Airload unit torsion moments - swept (in.)

167-225 Data for vertical tail effecis

167 Vertical tail 1lift curve slope

168 Parameter KV(B)

169 Z-distance from VT root to vertical tailload CP (in.)
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TABLE 14. THE BU DATA REGION (QONT)

Location Description

170 XV distance from VT apex to vertical tailload CP (in.)
17 Airload unit side shear at body interface (dec)

172 Airload unit bending moment at body interface (in.)
173 Airload unit torsion moment at body interface (in.)
174-186 Thirteen VT load stations - percent spantip to root (dec)
187-199 Airload unit side shears from tip to root (dec)
200-212 Airload unit bending moments - swept (in.)

213-225 Airload unit torsion moments - swept (in.)

226-357 Data arrays for subroutine WFLEX

226-255 Rigid load matrix - AFW(10,3) (1b)

256-285 Rigid load CP(X/C) matrix - AFWCP (10,3) (dec)
286-315 Flexible load matrix - AFWF(10,3) (1b)

316-345 Aeroelastic increment load matrix - AFWDF(10,3) (1b)
346-357 Unit loads and F/R matrix - F(3,4) (dec)

358-403 Data for aeroelastic flap effects

358 X-distance from apex to total load CP (in.)

359 Y-distance from centerline tu exposed load CP (in.)
360 X-distance from apex to exposed load CP (in.)

361 X-distance from apex to carry-over load CP (in.)

362 Airload unit shear at side of body (dec)

363 Airload unit bending moment at side of body (in.)
364 Airload unit torsion moment at side of body (in.)
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TABLE 14. THE BU DATA REGION (CONCL)

Location Description

365-377 Airload unit shears from tip to centerline (dec)
378-390 Airload unit bending moments - swept (in.)
391-403 Airload unit torsion moments - swept (in.)
404-449 Data for inertial aeroelastic effects .

404 X-distance from apex to total load CP (in.)

405 Y-distance from centerline to exposed load CP (in.)
406 X-distance from apex to exposed load CP (in.)
407 X-distance from apex to carry-over load CP (in.)
408 Airload unit shear at side of body (dec)

409 Airload unit bending at side of body (in.)

410 Airload unit torsion at side of body (in.)
411-423 Airload unit shears from tip to centerline (dec)
424-436 Airload unit bending moments - swept (in.)
437-449 Airload unit torsion moments - swept (in.)
450-454 Data for subroutine SPABMF

450 Wing total flexible alpha airload (PZW1l) (1b)
451 Wing total rigid flap airload (PZW2) (1b)

452 Wing total aeroelastic flap airload (PZW3) (1b)
453 Wing total inertia aeroelastic airload (PZW4) (1b)
455-494 Previously inputed EI and GJ arrays

495-500. Are not used
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TABLE 15. OUTPUT B DATA REGION

Location

Description

BP(1) through BZ{i80) is equivalent to TOM(3653) through TOMM(3832)

1

2

10

11

12

13

14

15

16

17

18

19

20

Condition number
Fuselage ID number
pZN’ body nose normal load (1b)

pYN’ body nose side load (1b)

X,» body nose CP (fus sta) (in.)

pZW(B)/z’ exposed wing panel load (per side) (1b)
Yw(B)» spanwise CP of exposed wing panel load (BL) (in.)
YW(B)’ exposed wing panel CP (fus sta) (in.)

pZB(W)’ body carry-over load (1b)

YB(W), body carry-over CP (fus sta) (in.)

sz./z, horizontal tail panel load (per side) (1b)

7m, spanwise CP of horizontal tail panel load (BL) (in.)
-)Em., horizontal tailload CP (fus sta) (in.)

Mxv(H), incremental unsymmetrical horizontal tail rolling
moment (for T-tail and fus) (in./1b)

PYVI" vertical tail side load

ZVI" vertical tail spanwise CP (WL) (in.)
YVT’ vertical tail CP (fus sta) (in.)
Nz, airplane normal load factor

Ny, airplane side load factor

Q, airplane pitching acceleration (rad/secz)
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TABLE 15. OUTPUT B@ DATA REGION (CONT)

Location Description
21 R, airplane yawing acceleration (rad/sec?)
22 Wing ID number
23 Ypy, wing-body interface station (BL) (in.)
24 Szpw, wing shear load at side of body station (1b)
25 , exposed wing panel rolling moment at side of
body station (in./1b)
26 Mypw» exposed wing panel pitching moment at intersection

of load reference line and side of body station (in./1b)

Wing shears and moments at stations Yy (1) through Yy,,(12) along lo=d

reference line:

27

28

29

30

75

76

77

78

79

74

Yyan (1), first wing station (in.)

Szw(1), shear at station Yua(1) (1b)

MX A(1), bending moment at station Yw A(l) (in./1b)
MY A(1), torsional moment at station Yw A(1) (in./1b)

Station, shear, and moments in same order as 27 through
30, for next 11 wing stations

Horizontal tail ID number

YBH’ horizontal tail-body interface station (BL) (in.)

SZBH’ horizontal tail shear at side of body station (1b)
MxpH, exposed horizontal tail panel rolling moment at
side of body station (in./lb)

MyEH, exposed horizontal tail panel pitching moment at
intersection of load reference line and side of body
station (in./1b)
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TABLE 15. OUTPUT BA DATA REGION (CONCL)

Location

Description

Horizontal tail shears and moments at stations YjA(1) through Yj,(12)
along load reference line:.

80

81

82

83

84 - 127

128

129

130

131

132

YH A(l), first horizontal tail station (in.)

SZH' shear at station YH A(1) (1b)

M'X A bending moment at station YH A(1) (in./1b)
WA' torsional moment at station YH A(1) (in./1b)

Station, shear, and moments in same order as 80 through
81, for next 11 horizontal tail stations

Vertical tail ID number

Zgy, vertical distance from vertical tail root chord
station to vertical tail-body interface station (in.)

Sypy, vertical tail shear at vertical tail-body
interface station (1b)

Mxpy, exposed vertical tail panel rolling moment at
vertical tail-body interface station (in./1b)

Mzpy, exposed vertical tail panel yawing moment at the
intersection of the load reference line and the vertical
tail-body interface station (in./1b)

Vert:ical tail shears and moments at stations Zys(1) through Zyp(12)
along load reference line

133
134
135
136

137 - 180

ZVA(I), first vertical tail station (in.)

SZ (1), shear at station Zv (1) (1b)

MX A(l), bending moment at station ZVA(I) (in./1b)
MZ A(1), torsional moment at station ZVA(I) (in./1b)

Station, shear, and moments in same order as 133 through
136, for next 11 vertical tail stations
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TABLE 16. INTEGER DATA REGION (ND)

Location Description
ND(1) is equivalent to TCOM(4201)
1-12 Integers

13-46 Control factors (refer to Table 1)

47-99 Are not used

100 BFONTL - Case number counter (NC)

101 Integer Variable (I)

102 Integer Variable (J)

103 USPANF - N4EIGJ = 20

103 BFONTL - Punched card index number col 2-12 (IC)

104 Punched card ID number col 73-80 (IDC)

105 BFONTL, USPANF - SIC matrix calculation option (IACALCS)
106 BFONTL, BNLDSF - Condition type factor (NI)

107 BFCNTL, RERDAT, USPANF - RERDAT entry factor (IR)
108 BFCNTL, USPANF - (NF = -1)

109-131 - BFONTL - Condition selection array (No = -1, Yes = 1)
132 RERDAT, USPANF - Integer variable (I)

133 Integer variable (J)

134 USPANF - Integer variable (K)

135 Integer variable (L)

136 . Integer variable (M)

137 USPANF, RERDAT, BNLDSF, SPABMF - Wing position factor (IP)

(Refer to note)
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TABLE 16. INTEGER DATA REGION (ND) (CONT)

Location Description
138 FOPDM2 - Interpolation factor (N3)
139 Interpolation factor (N4)

140 Integer variable (I)

141 Integer variable (K)

142 Integer variable (L)

143 O#DIM2 - Interpolation factor (N1)
144 Integer variable (J)

145 Integer variable (JJ)

146 Integer variable (K)

147 ' Integer variable (L)

148 Integer variable (M)

149 USPANF - Repeatative operation counter (NT)
150 BNLDSF - Repeatative operation ccunter (NT)
151 Integer variable (I)

152 Integer variable (J)

153 Integer variable (K)

154 SPABMF - Distribution selector (ID)
155 Integer variable (I)

156 Integer variable (J)

157 Integer variable (K)
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TABLE 16. INTEGER DATA REGION (ND) (OONCL)

Location Description
158 Integer variable (L)

159 Integer variable (M)

160-200 Not used

NOTE: (-1) = fixed, (0) = VS wing fwd, (1) = VS wing aft
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